All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.badlogic.gdx.ai.utils.ArithmeticUtils Maven / Gradle / Ivy

/*******************************************************************************
 * Copyright 2014 See AUTHORS file.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * 
 *   http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 ******************************************************************************/

package com.badlogic.gdx.ai.utils;

import com.badlogic.gdx.math.MathUtils;

/** Some useful math functions.
 * 
 * @author davebaol */
public final class ArithmeticUtils {

	private ArithmeticUtils () {
	}

	/** Wraps the given angle to the range [-PI, PI]
	 * @param a the angle in radians
	 * @return the given angle wrapped to the range [-PI, PI] */
	public static float wrapAngleAroundZero (float a) {
		if (a >= 0) {
			float rotation = a % MathUtils.PI2;
			if (rotation > MathUtils.PI) rotation -= MathUtils.PI2;
			return rotation;
		} else {
			float rotation = -a % MathUtils.PI2;
			if (rotation > MathUtils.PI) rotation -= MathUtils.PI2;
			return -rotation;
		}
	}

	/** Returns the greatest common divisor of two positive numbers (this precondition is not checked and the
	 * result is undefined if not fulfilled) using the "binary gcd" method which avoids division and modulo operations. See Knuth
	 * 4.5.2 algorithm B. The algorithm is due to Josef Stein (1961).
	 * 

* Special cases: *

    *
  • The result of {@code gcd(x, x)}, {@code gcd(0, x)} and {@code gcd(x, 0)} is the value of {@code x}.
  • *
  • The invocation {@code gcd(0, 0)} is the only one which returns {@code 0}.
  • *
* * @param a a non negative number. * @param b a non negative number. * @return the greatest common divisor. */ public static int gcdPositive (int a, int b) { if (a == 0) return b; if (b == 0) return a; // Make "a" and "b" odd, keeping track of common power of 2. final int aTwos = Integer.numberOfTrailingZeros(a); a >>= aTwos; final int bTwos = Integer.numberOfTrailingZeros(b); b >>= bTwos; final int shift = aTwos <= bTwos ? aTwos : bTwos; // min(aTwos, bTwos); // "a" and "b" are positive. // If a > b then "gdc(a, b)" is equal to "gcd(a - b, b)". // If a < b then "gcd(a, b)" is equal to "gcd(b - a, a)". // Hence, in the successive iterations: // "a" becomes the absolute difference of the current values, // "b" becomes the minimum of the current values. while (a != b) { final int delta = a - b; b = a <= b ? a : b; // min(a, b); a = delta < 0 ? -delta : delta; // abs(delta); // Remove any power of 2 in "a" ("b" is guaranteed to be odd). a >>= Integer.numberOfTrailingZeros(a); } // Recover the common power of 2. return a << shift; } /** Returns the least common multiple of the absolute value of two numbers, using the formula * {@code lcm(a, b) = (a / gcd(a, b)) * b}. *

* Special cases: *

    *
  • The invocations {@code lcm(Integer.MIN_VALUE, n)} and {@code lcm(n, Integer.MIN_VALUE)}, where {@code abs(n)} is a power * of 2, throw an {@code ArithmeticException}, because the result would be 2^31, which is too large for an {@code int} value.
  • *
  • The result of {@code lcm(0, x)} and {@code lcm(x, 0)} is {@code 0} for any {@code x}. *
* * @param a a non-negative number. * @param b a non-negative number. * @return the least common multiple, never negative. * @throws ArithmeticException if the result cannot be represented as a non-negative {@code int} value. */ public static int lcmPositive (int a, int b) throws ArithmeticException { if (a == 0 || b == 0) return 0; int lcm = Math.abs(mulAndCheck(a / gcdPositive(a, b), b)); if (lcm == Integer.MIN_VALUE) { throw new ArithmeticException("overflow: lcm(" + a + ", " + b + ") > 2^31"); } return lcm; } /** Returns the greatest common divisor of the given absolute values. This implementation uses {@link #gcdPositive(int, int)} * and has the same special cases. * * @param args non-negative numbers * @return the greatest common divisor. */ public static int gcdPositive (int... args) { if (args == null || args.length < 2) throw new IllegalArgumentException("gcdPositive requires at least two arguments"); int result = args[0]; int n = args.length; for (int i = 1; i < n; i++) { result = gcdPositive(result, args[i]); } return result; } /** Returns the least common multiple of the given absolute values. This implementation uses {@link #lcmPositive(int, int)} and * has the same special cases. * * @param args non-negative numbers * @return the least common multiple, never negative. * @throws ArithmeticException if the result cannot be represented as a non-negative {@code int} value. */ public static int lcmPositive (int... args) { if (args == null || args.length < 2) throw new IllegalArgumentException("lcmPositive requires at least two arguments"); int result = args[0]; int n = args.length; for (int i = 1; i < n; i++) { result = lcmPositive(result, args[i]); } return result; } /** Multiply two integers, checking for overflow. * * @param x first factor * @param y second factor * @return the product {@code x * y}. * @throws ArithmeticException if the result can not be represented as an {@code int}. */ public static int mulAndCheck (int x, int y) throws ArithmeticException { long m = ((long)x) * ((long)y); if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) { throw new ArithmeticException(); } return (int)m; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy