com.badlogic.gdx.math.Vector3 Maven / Gradle / Ivy
The newest version!
/*******************************************************************************
* Copyright 2011 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
******************************************************************************/
package com.badlogic.gdx.math;
import java.io.Serializable;
import com.badlogic.gdx.utils.GdxRuntimeException;
import com.badlogic.gdx.utils.NumberUtils;
/** Encapsulates a 3D vector. Allows chaining operations by returning a reference to itself in all modification methods.
* @author [email protected] */
public class Vector3 implements Serializable, Vector {
private static final long serialVersionUID = 3840054589595372522L;
/** the x-component of this vector **/
public float x;
/** the y-component of this vector **/
public float y;
/** the z-component of this vector **/
public float z;
public final static Vector3 X = new Vector3(1, 0, 0);
public final static Vector3 Y = new Vector3(0, 1, 0);
public final static Vector3 Z = new Vector3(0, 0, 1);
public final static Vector3 Zero = new Vector3(0, 0, 0);
private final static Matrix4 tmpMat = new Matrix4();
/** Constructs a vector at (0,0,0) */
public Vector3 () {
}
/** Creates a vector with the given components
* @param x The x-component
* @param y The y-component
* @param z The z-component */
public Vector3 (float x, float y, float z) {
this.set(x, y, z);
}
/** Creates a vector from the given vector
* @param vector The vector */
public Vector3 (final Vector3 vector) {
this.set(vector);
}
/** Creates a vector from the given array. The array must have at least 3 elements.
*
* @param values The array */
public Vector3 (final float[] values) {
this.set(values[0], values[1], values[2]);
}
/** Creates a vector from the given vector and z-component
*
* @param vector The vector
* @param z The z-component */
public Vector3 (final Vector2 vector, float z) {
this.set(vector.x, vector.y, z);
}
/** Sets the vector to the given components
*
* @param x The x-component
* @param y The y-component
* @param z The z-component
* @return this vector for chaining */
public Vector3 set (float x, float y, float z) {
this.x = x;
this.y = y;
this.z = z;
return this;
}
@Override
public Vector3 set (final Vector3 vector) {
return this.set(vector.x, vector.y, vector.z);
}
/** Sets the components from the array. The array must have at least 3 elements
*
* @param values The array
* @return this vector for chaining */
public Vector3 set (final float[] values) {
return this.set(values[0], values[1], values[2]);
}
/** Sets the components of the given vector and z-component
*
* @param vector The vector
* @param z The z-component
* @return This vector for chaining */
public Vector3 set (final Vector2 vector, float z) {
return this.set(vector.x, vector.y, z);
}
/** Sets the components from the given spherical coordinate
* @param azimuthalAngle The angle between x-axis in radians [0, 2pi]
* @param polarAngle The angle between z-axis in radians [0, pi]
* @return This vector for chaining */
public Vector3 setFromSpherical (float azimuthalAngle, float polarAngle) {
float cosPolar = MathUtils.cos(polarAngle);
float sinPolar = MathUtils.sin(polarAngle);
float cosAzim = MathUtils.cos(azimuthalAngle);
float sinAzim = MathUtils.sin(azimuthalAngle);
return this.set(cosAzim * sinPolar, sinAzim * sinPolar, cosPolar);
}
@Override
public Vector3 setToRandomDirection () {
float u = MathUtils.random();
float v = MathUtils.random();
float theta = MathUtils.PI2 * u; // azimuthal angle
float phi = (float)Math.acos(2f * v - 1f); // polar angle
return this.setFromSpherical(theta, phi);
}
@Override
public Vector3 cpy () {
return new Vector3(this);
}
@Override
public Vector3 add (final Vector3 vector) {
return this.add(vector.x, vector.y, vector.z);
}
/** Adds the given vector to this component
* @param x The x-component of the other vector
* @param y The y-component of the other vector
* @param z The z-component of the other vector
* @return This vector for chaining. */
public Vector3 add (float x, float y, float z) {
return this.set(this.x + x, this.y + y, this.z + z);
}
/** Adds the given value to all three components of the vector.
*
* @param values The value
* @return This vector for chaining */
public Vector3 add (float values) {
return this.set(this.x + values, this.y + values, this.z + values);
}
@Override
public Vector3 sub (final Vector3 a_vec) {
return this.sub(a_vec.x, a_vec.y, a_vec.z);
}
/** Subtracts the other vector from this vector.
*
* @param x The x-component of the other vector
* @param y The y-component of the other vector
* @param z The z-component of the other vector
* @return This vector for chaining */
public Vector3 sub (float x, float y, float z) {
return this.set(this.x - x, this.y - y, this.z - z);
}
/** Subtracts the given value from all components of this vector
*
* @param value The value
* @return This vector for chaining */
public Vector3 sub (float value) {
return this.set(this.x - value, this.y - value, this.z - value);
}
@Override
public Vector3 scl (float scalar) {
return this.set(this.x * scalar, this.y * scalar, this.z * scalar);
}
@Override
public Vector3 scl (final Vector3 other) {
return this.set(x * other.x, y * other.y, z * other.z);
}
/** Scales this vector by the given values
* @param vx X value
* @param vy Y value
* @param vz Z value
* @return This vector for chaining */
public Vector3 scl (float vx, float vy, float vz) {
return this.set(this.x * vx, this.y * vy, this.z * vz);
}
@Override
public Vector3 mulAdd (Vector3 vec, float scalar) {
this.x += vec.x * scalar;
this.y += vec.y * scalar;
this.z += vec.z * scalar;
return this;
}
@Override
public Vector3 mulAdd (Vector3 vec, Vector3 mulVec) {
this.x += vec.x * mulVec.x;
this.y += vec.y * mulVec.y;
this.z += vec.z * mulVec.z;
return this;
}
/** @return The Euclidean length */
public static float len (final float x, final float y, final float z) {
return (float)Math.sqrt(x * x + y * y + z * z);
}
@Override
public float len () {
return (float)Math.sqrt(x * x + y * y + z * z);
}
/** @return The squared Euclidean length */
public static float len2 (final float x, final float y, final float z) {
return x * x + y * y + z * z;
}
@Override
public float len2 () {
return x * x + y * y + z * z;
}
/** Returns true if this vector and the vector parameter have identical components.
* @param vector The other vector
* @return Whether this and the other vector are equal with exact precision */
public boolean idt (final Vector3 vector) {
return x == vector.x && y == vector.y && z == vector.z;
}
/** @return The Euclidean distance between the two specified vectors */
public static float dst (final float x1, final float y1, final float z1, final float x2, final float y2, final float z2) {
final float a = x2 - x1;
final float b = y2 - y1;
final float c = z2 - z1;
return (float)Math.sqrt(a * a + b * b + c * c);
}
@Override
public float dst (final Vector3 vector) {
final float a = vector.x - x;
final float b = vector.y - y;
final float c = vector.z - z;
return (float)Math.sqrt(a * a + b * b + c * c);
}
/** @return the distance between this point and the given point */
public float dst (float x, float y, float z) {
final float a = x - this.x;
final float b = y - this.y;
final float c = z - this.z;
return (float)Math.sqrt(a * a + b * b + c * c);
}
/** @return the squared distance between the given points */
public static float dst2 (final float x1, final float y1, final float z1, final float x2, final float y2, final float z2) {
final float a = x2 - x1;
final float b = y2 - y1;
final float c = z2 - z1;
return a * a + b * b + c * c;
}
@Override
public float dst2 (Vector3 point) {
final float a = point.x - x;
final float b = point.y - y;
final float c = point.z - z;
return a * a + b * b + c * c;
}
/** Returns the squared distance between this point and the given point
* @param x The x-component of the other point
* @param y The y-component of the other point
* @param z The z-component of the other point
* @return The squared distance */
public float dst2 (float x, float y, float z) {
final float a = x - this.x;
final float b = y - this.y;
final float c = z - this.z;
return a * a + b * b + c * c;
}
@Override
public Vector3 nor () {
final float len2 = this.len2();
if (len2 == 0f || len2 == 1f) return this;
return this.scl(1f / (float)Math.sqrt(len2));
}
/** @return The dot product between the two vectors */
public static float dot (float x1, float y1, float z1, float x2, float y2, float z2) {
return x1 * x2 + y1 * y2 + z1 * z2;
}
@Override
public float dot (final Vector3 vector) {
return x * vector.x + y * vector.y + z * vector.z;
}
/** Returns the dot product between this and the given vector.
* @param x The x-component of the other vector
* @param y The y-component of the other vector
* @param z The z-component of the other vector
* @return The dot product */
public float dot (float x, float y, float z) {
return this.x * x + this.y * y + this.z * z;
}
/** Sets this vector to the cross product between it and the other vector.
* @param vector The other vector
* @return This vector for chaining */
public Vector3 crs (final Vector3 vector) {
return this.set(y * vector.z - z * vector.y, z * vector.x - x * vector.z, x * vector.y - y * vector.x);
}
/** Sets this vector to the cross product between it and the other vector.
* @param x The x-component of the other vector
* @param y The y-component of the other vector
* @param z The z-component of the other vector
* @return This vector for chaining */
public Vector3 crs (float x, float y, float z) {
return this.set(this.y * z - this.z * y, this.z * x - this.x * z, this.x * y - this.y * x);
}
/** Left-multiplies the vector by the given 4x3 column major matrix. The matrix should be composed by a 3x3 matrix representing
* rotation and scale plus a 1x3 matrix representing the translation.
* @param matrix The matrix
* @return This vector for chaining */
public Vector3 mul4x3 (float[] matrix) {
return set(x * matrix[0] + y * matrix[3] + z * matrix[6] + matrix[9],
x * matrix[1] + y * matrix[4] + z * matrix[7] + matrix[10], x * matrix[2] + y * matrix[5] + z * matrix[8] + matrix[11]);
}
/** Left-multiplies the vector by the given matrix, assuming the fourth (w) component of the vector is 1.
* @param matrix The matrix
* @return This vector for chaining */
public Vector3 mul (final Matrix4 matrix) {
final float[] l_mat = matrix.val;
return this.set(x * l_mat[Matrix4.M00] + y * l_mat[Matrix4.M01] + z * l_mat[Matrix4.M02] + l_mat[Matrix4.M03],
x * l_mat[Matrix4.M10] + y * l_mat[Matrix4.M11] + z * l_mat[Matrix4.M12] + l_mat[Matrix4.M13],
x * l_mat[Matrix4.M20] + y * l_mat[Matrix4.M21] + z * l_mat[Matrix4.M22] + l_mat[Matrix4.M23]);
}
/** Multiplies the vector by the transpose of the given matrix, assuming the fourth (w) component of the vector is 1.
* @param matrix The matrix
* @return This vector for chaining */
public Vector3 traMul (final Matrix4 matrix) {
final float[] l_mat = matrix.val;
return this.set(x * l_mat[Matrix4.M00] + y * l_mat[Matrix4.M10] + z * l_mat[Matrix4.M20] + l_mat[Matrix4.M30],
x * l_mat[Matrix4.M01] + y * l_mat[Matrix4.M11] + z * l_mat[Matrix4.M21] + l_mat[Matrix4.M31],
x * l_mat[Matrix4.M02] + y * l_mat[Matrix4.M12] + z * l_mat[Matrix4.M22] + l_mat[Matrix4.M32]);
}
/** Left-multiplies the vector by the given matrix.
* @param matrix The matrix
* @return This vector for chaining */
public Vector3 mul (Matrix3 matrix) {
final float[] l_mat = matrix.val;
return set(x * l_mat[Matrix3.M00] + y * l_mat[Matrix3.M01] + z * l_mat[Matrix3.M02],
x * l_mat[Matrix3.M10] + y * l_mat[Matrix3.M11] + z * l_mat[Matrix3.M12],
x * l_mat[Matrix3.M20] + y * l_mat[Matrix3.M21] + z * l_mat[Matrix3.M22]);
}
/** Multiplies the vector by the transpose of the given matrix.
* @param matrix The matrix
* @return This vector for chaining */
public Vector3 traMul (Matrix3 matrix) {
final float[] l_mat = matrix.val;
return set(x * l_mat[Matrix3.M00] + y * l_mat[Matrix3.M10] + z * l_mat[Matrix3.M20],
x * l_mat[Matrix3.M01] + y * l_mat[Matrix3.M11] + z * l_mat[Matrix3.M21],
x * l_mat[Matrix3.M02] + y * l_mat[Matrix3.M12] + z * l_mat[Matrix3.M22]);
}
/** Multiplies the vector by the given {@link Quaternion}.
* @return This vector for chaining */
public Vector3 mul (final Quaternion quat) {
return quat.transform(this);
}
/** Multiplies this vector by the given matrix dividing by w, assuming the fourth (w) component of the vector is 1. This is
* mostly used to project/unproject vectors via a perspective projection matrix.
*
* @param matrix The matrix.
* @return This vector for chaining */
public Vector3 prj (final Matrix4 matrix) {
final float[] l_mat = matrix.val;
final float l_w = 1f / (x * l_mat[Matrix4.M30] + y * l_mat[Matrix4.M31] + z * l_mat[Matrix4.M32] + l_mat[Matrix4.M33]);
return this.set((x * l_mat[Matrix4.M00] + y * l_mat[Matrix4.M01] + z * l_mat[Matrix4.M02] + l_mat[Matrix4.M03]) * l_w,
(x * l_mat[Matrix4.M10] + y * l_mat[Matrix4.M11] + z * l_mat[Matrix4.M12] + l_mat[Matrix4.M13]) * l_w,
(x * l_mat[Matrix4.M20] + y * l_mat[Matrix4.M21] + z * l_mat[Matrix4.M22] + l_mat[Matrix4.M23]) * l_w);
}
/** Multiplies this vector by the first three columns of the matrix, essentially only applying rotation and scaling.
*
* @param matrix The matrix
* @return This vector for chaining */
public Vector3 rot (final Matrix4 matrix) {
final float[] l_mat = matrix.val;
return this.set(x * l_mat[Matrix4.M00] + y * l_mat[Matrix4.M01] + z * l_mat[Matrix4.M02],
x * l_mat[Matrix4.M10] + y * l_mat[Matrix4.M11] + z * l_mat[Matrix4.M12],
x * l_mat[Matrix4.M20] + y * l_mat[Matrix4.M21] + z * l_mat[Matrix4.M22]);
}
/** Multiplies this vector by the transpose of the first three columns of the matrix. Note: only works for translation and
* rotation, does not work for scaling. For those, use {@link #rot(Matrix4)} with {@link Matrix4#inv()}.
* @param matrix The transformation matrix
* @return The vector for chaining */
public Vector3 unrotate (final Matrix4 matrix) {
final float[] l_mat = matrix.val;
return this.set(x * l_mat[Matrix4.M00] + y * l_mat[Matrix4.M10] + z * l_mat[Matrix4.M20],
x * l_mat[Matrix4.M01] + y * l_mat[Matrix4.M11] + z * l_mat[Matrix4.M21],
x * l_mat[Matrix4.M02] + y * l_mat[Matrix4.M12] + z * l_mat[Matrix4.M22]);
}
/** Translates this vector in the direction opposite to the translation of the matrix and the multiplies this vector by the
* transpose of the first three columns of the matrix. Note: only works for translation and rotation, does not work for
* scaling. For those, use {@link #mul(Matrix4)} with {@link Matrix4#inv()}.
* @param matrix The transformation matrix
* @return The vector for chaining */
public Vector3 untransform (final Matrix4 matrix) {
final float[] l_mat = matrix.val;
x -= l_mat[Matrix4.M03];
y -= l_mat[Matrix4.M03];
z -= l_mat[Matrix4.M03];
return this.set(x * l_mat[Matrix4.M00] + y * l_mat[Matrix4.M10] + z * l_mat[Matrix4.M20],
x * l_mat[Matrix4.M01] + y * l_mat[Matrix4.M11] + z * l_mat[Matrix4.M21],
x * l_mat[Matrix4.M02] + y * l_mat[Matrix4.M12] + z * l_mat[Matrix4.M22]);
}
/** Rotates this vector by the given angle in degrees around the given axis.
*
* @param degrees the angle in degrees
* @param axisX the x-component of the axis
* @param axisY the y-component of the axis
* @param axisZ the z-component of the axis
* @return This vector for chaining */
public Vector3 rotate (float degrees, float axisX, float axisY, float axisZ) {
return this.mul(tmpMat.setToRotation(axisX, axisY, axisZ, degrees));
}
/** Rotates this vector by the given angle in radians around the given axis.
*
* @param radians the angle in radians
* @param axisX the x-component of the axis
* @param axisY the y-component of the axis
* @param axisZ the z-component of the axis
* @return This vector for chaining */
public Vector3 rotateRad (float radians, float axisX, float axisY, float axisZ) {
return this.mul(tmpMat.setToRotationRad(axisX, axisY, axisZ, radians));
}
/** Rotates this vector by the given angle in degrees around the given axis.
*
* @param axis the axis
* @param degrees the angle in degrees
* @return This vector for chaining */
public Vector3 rotate (final Vector3 axis, float degrees) {
tmpMat.setToRotation(axis, degrees);
return this.mul(tmpMat);
}
/** Rotates this vector by the given angle in radians around the given axis.
*
* @param axis the axis
* @param radians the angle in radians
* @return This vector for chaining */
public Vector3 rotateRad (final Vector3 axis, float radians) {
tmpMat.setToRotationRad(axis, radians);
return this.mul(tmpMat);
}
@Override
public boolean isUnit () {
return isUnit(0.000000001f);
}
@Override
public boolean isUnit (final float margin) {
return Math.abs(len2() - 1f) < margin;
}
@Override
public boolean isZero () {
return x == 0 && y == 0 && z == 0;
}
@Override
public boolean isZero (final float margin) {
return len2() < margin;
}
@Override
public boolean isOnLine (Vector3 other, float epsilon) {
return len2(y * other.z - z * other.y, z * other.x - x * other.z, x * other.y - y * other.x) <= epsilon;
}
@Override
public boolean isOnLine (Vector3 other) {
return len2(y * other.z - z * other.y, z * other.x - x * other.z,
x * other.y - y * other.x) <= MathUtils.FLOAT_ROUNDING_ERROR;
}
@Override
public boolean isCollinear (Vector3 other, float epsilon) {
return isOnLine(other, epsilon) && hasSameDirection(other);
}
@Override
public boolean isCollinear (Vector3 other) {
return isOnLine(other) && hasSameDirection(other);
}
@Override
public boolean isCollinearOpposite (Vector3 other, float epsilon) {
return isOnLine(other, epsilon) && hasOppositeDirection(other);
}
@Override
public boolean isCollinearOpposite (Vector3 other) {
return isOnLine(other) && hasOppositeDirection(other);
}
@Override
public boolean isPerpendicular (Vector3 vector) {
return MathUtils.isZero(dot(vector));
}
@Override
public boolean isPerpendicular (Vector3 vector, float epsilon) {
return MathUtils.isZero(dot(vector), epsilon);
}
@Override
public boolean hasSameDirection (Vector3 vector) {
return dot(vector) > 0;
}
@Override
public boolean hasOppositeDirection (Vector3 vector) {
return dot(vector) < 0;
}
@Override
public Vector3 lerp (final Vector3 target, float alpha) {
x += alpha * (target.x - x);
y += alpha * (target.y - y);
z += alpha * (target.z - z);
return this;
}
@Override
public Vector3 interpolate (Vector3 target, float alpha, Interpolation interpolator) {
return lerp(target, interpolator.apply(0f, 1f, alpha));
}
/** Spherically interpolates between this vector and the target vector by alpha which is in the range [0,1]. The result is
* stored in this vector.
*
* @param target The target vector
* @param alpha The interpolation coefficient
* @return This vector for chaining. */
public Vector3 slerp (final Vector3 target, float alpha) {
final float dot = dot(target);
// If the inputs are too close for comfort, simply linearly interpolate.
if (dot > 0.9995 || dot < -0.9995) return lerp(target, alpha);
// theta0 = angle between input vectors
final float theta0 = (float)Math.acos(dot);
// theta = angle between this vector and result
final float theta = theta0 * alpha;
final float st = (float)Math.sin(theta);
final float tx = target.x - x * dot;
final float ty = target.y - y * dot;
final float tz = target.z - z * dot;
final float l2 = tx * tx + ty * ty + tz * tz;
final float dl = st * ((l2 < 0.0001f) ? 1f : 1f / (float)Math.sqrt(l2));
return scl((float)Math.cos(theta)).add(tx * dl, ty * dl, tz * dl).nor();
}
/** Converts this {@code Vector3} to a string in the format {@code (x,y,z)}.
* @return a string representation of this object. */
@Override
public String toString () {
return "(" + x + "," + y + "," + z + ")";
}
/** Sets this {@code Vector3} to the value represented by the specified string according to the format of {@link #toString()}.
* @param v the string.
* @return this vector for chaining */
public Vector3 fromString (String v) {
int s0 = v.indexOf(',', 1);
int s1 = v.indexOf(',', s0 + 1);
if (s0 != -1 && s1 != -1 && v.charAt(0) == '(' && v.charAt(v.length() - 1) == ')') {
try {
float x = Float.parseFloat(v.substring(1, s0));
float y = Float.parseFloat(v.substring(s0 + 1, s1));
float z = Float.parseFloat(v.substring(s1 + 1, v.length() - 1));
return this.set(x, y, z);
} catch (NumberFormatException ex) {
// Throw a GdxRuntimeException
}
}
throw new GdxRuntimeException("Malformed Vector3: " + v);
}
@Override
public Vector3 limit (float limit) {
return limit2(limit * limit);
}
@Override
public Vector3 limit2 (float limit2) {
float len2 = len2();
if (len2 > limit2) {
scl((float)Math.sqrt(limit2 / len2));
}
return this;
}
@Override
public Vector3 setLength (float len) {
return setLength2(len * len);
}
@Override
public Vector3 setLength2 (float len2) {
float oldLen2 = len2();
return (oldLen2 == 0 || oldLen2 == len2) ? this : scl((float)Math.sqrt(len2 / oldLen2));
}
@Override
public Vector3 clamp (float min, float max) {
final float len2 = len2();
if (len2 == 0f) return this;
float max2 = max * max;
if (len2 > max2) return scl((float)Math.sqrt(max2 / len2));
float min2 = min * min;
if (len2 < min2) return scl((float)Math.sqrt(min2 / len2));
return this;
}
@Override
public int hashCode () {
final int prime = 31;
int result = 1;
result = prime * result + NumberUtils.floatToIntBits(x);
result = prime * result + NumberUtils.floatToIntBits(y);
result = prime * result + NumberUtils.floatToIntBits(z);
return result;
}
@Override
public boolean equals (Object obj) {
if (this == obj) return true;
if (obj == null) return false;
if (getClass() != obj.getClass()) return false;
Vector3 other = (Vector3)obj;
if (NumberUtils.floatToIntBits(x) != NumberUtils.floatToIntBits(other.x)) return false;
if (NumberUtils.floatToIntBits(y) != NumberUtils.floatToIntBits(other.y)) return false;
if (NumberUtils.floatToIntBits(z) != NumberUtils.floatToIntBits(other.z)) return false;
return true;
}
@Override
public boolean epsilonEquals (final Vector3 other, float epsilon) {
if (other == null) return false;
if (Math.abs(other.x - x) > epsilon) return false;
if (Math.abs(other.y - y) > epsilon) return false;
if (Math.abs(other.z - z) > epsilon) return false;
return true;
}
/** Compares this vector with the other vector, using the supplied epsilon for fuzzy equality testing.
* @return whether the vectors are the same. */
public boolean epsilonEquals (float x, float y, float z, float epsilon) {
if (Math.abs(x - this.x) > epsilon) return false;
if (Math.abs(y - this.y) > epsilon) return false;
if (Math.abs(z - this.z) > epsilon) return false;
return true;
}
/** Compares this vector with the other vector using MathUtils.FLOAT_ROUNDING_ERROR for fuzzy equality testing
*
* @param other other vector to compare
* @return true if vector are equal, otherwise false */
public boolean epsilonEquals (final Vector3 other) {
return epsilonEquals(other, MathUtils.FLOAT_ROUNDING_ERROR);
}
/** Compares this vector with the other vector using MathUtils.FLOAT_ROUNDING_ERROR for fuzzy equality testing
*
* @param x x component of the other vector to compare
* @param y y component of the other vector to compare
* @param z z component of the other vector to compare
* @return true if vector are equal, otherwise false */
public boolean epsilonEquals (float x, float y, float z) {
return epsilonEquals(x, y, z, MathUtils.FLOAT_ROUNDING_ERROR);
}
@Override
public Vector3 setZero () {
this.x = 0;
this.y = 0;
this.z = 0;
return this;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy