All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.badlogic.gdx.math.Quaternion Maven / Gradle / Ivy

There is a newer version: 1.13.0
Show newest version
/*******************************************************************************
 * Copyright 2011 See AUTHORS file.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * 
 *   http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 ******************************************************************************/

package com.badlogic.gdx.math;

import java.io.Serializable;

import com.badlogic.gdx.utils.NumberUtils;

/** A simple quaternion class.
 * @see http://en.wikipedia.org/wiki/Quaternion
 * @author [email protected]
 * @author vesuvio
 * @author xoppa */
public class Quaternion implements Serializable {
	private static final long serialVersionUID = -7661875440774897168L;
	private static Quaternion tmp1 = new Quaternion(0, 0, 0, 0);
	private static Quaternion tmp2 = new Quaternion(0, 0, 0, 0);

	public float x;
	public float y;
	public float z;
	public float w;

	/** Constructor, sets the four components of the quaternion.
	 * @param x The x-component
	 * @param y The y-component
	 * @param z The z-component
	 * @param w The w-component */
	public Quaternion (float x, float y, float z, float w) {
		this.set(x, y, z, w);
	}

	public Quaternion () {
		idt();
	}

	/** Constructor, sets the quaternion components from the given quaternion.
	 * 
	 * @param quaternion The quaternion to copy. */
	public Quaternion (Quaternion quaternion) {
		this.set(quaternion);
	}

	/** Constructor, sets the quaternion from the given axis vector and the angle around that axis in degrees.
	 * 
	 * @param axis The axis
	 * @param angle The angle in degrees. */
	public Quaternion (Vector3 axis, float angle) {
		this.set(axis, angle);
	}

	/** Sets the components of the quaternion
	 * @param x The x-component
	 * @param y The y-component
	 * @param z The z-component
	 * @param w The w-component
	 * @return This quaternion for chaining */
	public Quaternion set (float x, float y, float z, float w) {
		this.x = x;
		this.y = y;
		this.z = z;
		this.w = w;
		return this;
	}

	/** Sets the quaternion components from the given quaternion.
	 * @param quaternion The quaternion.
	 * @return This quaternion for chaining. */
	public Quaternion set (Quaternion quaternion) {
		return this.set(quaternion.x, quaternion.y, quaternion.z, quaternion.w);
	}

	/** Sets the quaternion components from the given axis and angle around that axis.
	 * 
	 * @param axis The axis
	 * @param angle The angle in degrees
	 * @return This quaternion for chaining. */
	public Quaternion set (Vector3 axis, float angle) {
		return setFromAxis(axis.x, axis.y, axis.z, angle);
	}

	/** @return a copy of this quaternion */
	public Quaternion cpy () {
		return new Quaternion(this);
	}

	/** @return the euclidean length of the specified quaternion */
	public final static float len (final float x, final float y, final float z, final float w) {
		return (float)Math.sqrt(x * x + y * y + z * z + w * w);
	}

	/** @return the euclidean length of this quaternion */
	public float len () {
		return (float)Math.sqrt(x * x + y * y + z * z + w * w);
	}

	@Override
	public String toString () {
		return "[" + x + "|" + y + "|" + z + "|" + w + "]";
	}

	/** Sets the quaternion to the given euler angles in degrees.
	 * @param yaw the rotation around the y axis in degrees
	 * @param pitch the rotation around the x axis in degrees
	 * @param roll the rotation around the z axis degrees
	 * @return this quaternion */
	public Quaternion setEulerAngles (float yaw, float pitch, float roll) {
		return setEulerAnglesRad(yaw * MathUtils.degreesToRadians, pitch * MathUtils.degreesToRadians, roll
			* MathUtils.degreesToRadians);
	}

	/** Sets the quaternion to the given euler angles in radians.
	 * @param yaw the rotation around the y axis in radians
	 * @param pitch the rotation around the x axis in radians
	 * @param roll the rotation around the z axis in radians
	 * @return this quaternion */
	public Quaternion setEulerAnglesRad (float yaw, float pitch, float roll) {
		final float hr = roll * 0.5f;
		final float shr = (float)Math.sin(hr);
		final float chr = (float)Math.cos(hr);
		final float hp = pitch * 0.5f;
		final float shp = (float)Math.sin(hp);
		final float chp = (float)Math.cos(hp);
		final float hy = yaw * 0.5f;
		final float shy = (float)Math.sin(hy);
		final float chy = (float)Math.cos(hy);
		final float chy_shp = chy * shp;
		final float shy_chp = shy * chp;
		final float chy_chp = chy * chp;
		final float shy_shp = shy * shp;

		x = (chy_shp * chr) + (shy_chp * shr); // cos(yaw/2) * sin(pitch/2) * cos(roll/2) + sin(yaw/2) * cos(pitch/2) * sin(roll/2)
		y = (shy_chp * chr) - (chy_shp * shr); // sin(yaw/2) * cos(pitch/2) * cos(roll/2) - cos(yaw/2) * sin(pitch/2) * sin(roll/2)
		z = (chy_chp * shr) - (shy_shp * chr); // cos(yaw/2) * cos(pitch/2) * sin(roll/2) - sin(yaw/2) * sin(pitch/2) * cos(roll/2)
		w = (chy_chp * chr) + (shy_shp * shr); // cos(yaw/2) * cos(pitch/2) * cos(roll/2) + sin(yaw/2) * sin(pitch/2) * sin(roll/2)
		return this;
	}

	/** Get the pole of the gimbal lock, if any. 
	 * @return positive (+1) for north pole, negative (-1) for south pole, zero (0) when no gimbal lock */ 
	public int getGimbalPole() {
		final float t = y*x+z*w;
		return t > 0.499f ? 1 : (t < -0.499f ? -1 : 0);
	}
	
	/** Get the roll euler angle in radians, which is the rotation around the z axis. Requires that this quaternion is normalized. 
	 * @return the rotation around the z axis in radians (between -PI and +PI) */
	public float getRollRad() {
		final int pole = getGimbalPole();
		return pole == 0 ? MathUtils.atan2(2f*(w*z + y*x), 1f - 2f * (x*x + z*z)) : (float)pole * 2f * MathUtils.atan2(y, w);
	}
	
	/** Get the roll euler angle in degrees, which is the rotation around the z axis. Requires that this quaternion is normalized. 
	 * @return the rotation around the z axis in degrees (between -180 and +180) */
	public float getRoll() {
		return getRollRad() * MathUtils.radiansToDegrees;
	}
	
	/** Get the pitch euler angle in radians, which is the rotation around the x axis. Requires that this quaternion is normalized. 
	 * @return the rotation around the x axis in radians (between -(PI/2) and +(PI/2)) */
	public float getPitchRad() {
		final int pole = getGimbalPole();
		return pole == 0 ? (float)Math.asin(MathUtils.clamp(2f*(w*x-z*y), -1f, 1f)) : (float)pole * MathUtils.PI * 0.5f;
	}

	/** Get the pitch euler angle in degrees, which is the rotation around the x axis. Requires that this quaternion is normalized. 
	 * @return the rotation around the x axis in degrees (between -90 and +90) */
	public float getPitch() {
		return getPitchRad() * MathUtils.radiansToDegrees;
	}
	
	/** Get the yaw euler angle in radians, which is the rotation around the y axis. Requires that this quaternion is normalized. 
	 * @return the rotation around the y axis in radians (between -PI and +PI) */
	public float getYawRad() {
		return getGimbalPole() == 0 ? MathUtils.atan2(2f*(y*w + x*z), 1f - 2f*(y*y+x*x)) : 0f;
	}
	
	/** Get the yaw euler angle in degrees, which is the rotation around the y axis. Requires that this quaternion is normalized. 
	 * @return the rotation around the y axis in degrees (between -180 and +180) */
	public float getYaw() {
		return getYawRad() * MathUtils.radiansToDegrees;
	}

	public final static float len2 (final float x, final float y, final float z, final float w) {
		return x * x + y * y + z * z + w * w;
	}

	/** @return the length of this quaternion without square root */
	public float len2 () {
		return x * x + y * y + z * z + w * w;
	}

	/** Normalizes this quaternion to unit length
	 * @return the quaternion for chaining */
	public Quaternion nor () {
		float len = len2();
		if (len != 0.f && !MathUtils.isEqual(len, 1f)) {
			len = (float)Math.sqrt(len);
			w /= len;
			x /= len;
			y /= len;
			z /= len;
		}
		return this;
	}

	/** Conjugate the quaternion.
	 * 
	 * @return This quaternion for chaining */
	public Quaternion conjugate () {
		x = -x;
		y = -y;
		z = -z;
		return this;
	}

	// TODO : this would better fit into the vector3 class
	/** Transforms the given vector using this quaternion
	 * 
	 * @param v Vector to transform */
	public Vector3 transform (Vector3 v) {
		tmp2.set(this);
		tmp2.conjugate();
		tmp2.mulLeft(tmp1.set(v.x, v.y, v.z, 0)).mulLeft(this);

		v.x = tmp2.x;
		v.y = tmp2.y;
		v.z = tmp2.z;
		return v;
	}

	/** Multiplies this quaternion with another one in the form of this = this * other
	 * 
	 * @param other Quaternion to multiply with
	 * @return This quaternion for chaining */
	public Quaternion mul (final Quaternion other) {
		final float newX = this.w * other.x + this.x * other.w + this.y * other.z - this.z * other.y;
		final float newY = this.w * other.y + this.y * other.w + this.z * other.x - this.x * other.z;
		final float newZ = this.w * other.z + this.z * other.w + this.x * other.y - this.y * other.x;
		final float newW = this.w * other.w - this.x * other.x - this.y * other.y - this.z * other.z;
		this.x = newX;
		this.y = newY;
		this.z = newZ;
		this.w = newW;
		return this;
	}

	/** Multiplies this quaternion with another one in the form of this = this * other
	 * 
	 * @param x the x component of the other quaternion to multiply with
	 * @param y the y component of the other quaternion to multiply with
	 * @param z the z component of the other quaternion to multiply with
	 * @param w the w component of the other quaternion to multiply with
	 * @return This quaternion for chaining */
	public Quaternion mul (final float x, final float y, final float z, final float w) {
		final float newX = this.w * x + this.x * w + this.y * z - this.z * y;
		final float newY = this.w * y + this.y * w + this.z * x - this.x * z;
		final float newZ = this.w * z + this.z * w + this.x * y - this.y * x;
		final float newW = this.w * w - this.x * x - this.y * y - this.z * z;
		this.x = newX;
		this.y = newY;
		this.z = newZ;
		this.w = newW;
		return this;
	}

	/** Multiplies this quaternion with another one in the form of this = other * this
	 * 
	 * @param other Quaternion to multiply with
	 * @return This quaternion for chaining */
	public Quaternion mulLeft (Quaternion other) {
		final float newX = other.w * this.x + other.x * this.w + other.y * this.z - other.z * y;
		final float newY = other.w * this.y + other.y * this.w + other.z * this.x - other.x * z;
		final float newZ = other.w * this.z + other.z * this.w + other.x * this.y - other.y * x;
		final float newW = other.w * this.w - other.x * this.x - other.y * this.y - other.z * z;
		this.x = newX;
		this.y = newY;
		this.z = newZ;
		this.w = newW;
		return this;
	}

	/** Multiplies this quaternion with another one in the form of this = other * this
	 * 
	 * @param x the x component of the other quaternion to multiply with
	 * @param y the y component of the other quaternion to multiply with
	 * @param z the z component of the other quaternion to multiply with
	 * @param w the w component of the other quaternion to multiply with
	 * @return This quaternion for chaining */
	public Quaternion mulLeft (final float x, final float y, final float z, final float w) {
		final float newX = w * this.x + x * this.w + y * this.z - z * y;
		final float newY = w * this.y + y * this.w + z * this.x - x * z;
		final float newZ = w * this.z + z * this.w + x * this.y - y * x;
		final float newW = w * this.w - x * this.x - y * this.y - z * z;
		this.x = newX;
		this.y = newY;
		this.z = newZ;
		this.w = newW;
		return this;
	}
	
	/** Add the x,y,z,w components of the passed in quaternion to the ones of this quaternion */
	public Quaternion add(Quaternion quaternion){
		this.x += quaternion.x;
		this.y += quaternion.y;
		this.z += quaternion.z;
		this.w += quaternion.w;
		return this;
	}
	
	/** Add the x,y,z,w components of the passed in quaternion to the ones of this quaternion */
	public Quaternion add(float qx, float qy, float qz, float qw){
		this.x += qx;
		this.y += qy;
		this.z += qz;
		this.w += qw;
		return this;
	}
	
	// TODO : the matrix4 set(quaternion) doesnt set the last row+col of the matrix to 0,0,0,1 so... that's why there is this
// method
	/** Fills a 4x4 matrix with the rotation matrix represented by this quaternion.
	 * 
	 * @param matrix Matrix to fill */
	public void toMatrix (final float[] matrix) {
		final float xx = x * x;
		final float xy = x * y;
		final float xz = x * z;
		final float xw = x * w;
		final float yy = y * y;
		final float yz = y * z;
		final float yw = y * w;
		final float zz = z * z;
		final float zw = z * w;
		// Set matrix from quaternion
		matrix[Matrix4.M00] = 1 - 2 * (yy + zz);
		matrix[Matrix4.M01] = 2 * (xy - zw);
		matrix[Matrix4.M02] = 2 * (xz + yw);
		matrix[Matrix4.M03] = 0;
		matrix[Matrix4.M10] = 2 * (xy + zw);
		matrix[Matrix4.M11] = 1 - 2 * (xx + zz);
		matrix[Matrix4.M12] = 2 * (yz - xw);
		matrix[Matrix4.M13] = 0;
		matrix[Matrix4.M20] = 2 * (xz - yw);
		matrix[Matrix4.M21] = 2 * (yz + xw);
		matrix[Matrix4.M22] = 1 - 2 * (xx + yy);
		matrix[Matrix4.M23] = 0;
		matrix[Matrix4.M30] = 0;
		matrix[Matrix4.M31] = 0;
		matrix[Matrix4.M32] = 0;
		matrix[Matrix4.M33] = 1;
	}

	/** Sets the quaternion to an identity Quaternion
	 * @return this quaternion for chaining */
	public Quaternion idt () {
		return this.set(0, 0, 0, 1);
	}

	/** @return If this quaternion is an identity Quaternion */
	public boolean isIdentity () {
		return MathUtils.isZero(x) && MathUtils.isZero(y) && MathUtils.isZero(z) && MathUtils.isEqual(w, 1f);
	}

	/** @return If this quaternion is an identity Quaternion */
	public boolean isIdentity (final float tolerance) {
		return MathUtils.isZero(x, tolerance) && MathUtils.isZero(y, tolerance) && MathUtils.isZero(z, tolerance)
			&& MathUtils.isEqual(w, 1f, tolerance);
	}

	// todo : the setFromAxis(v3,float) method should replace the set(v3,float) method
	/** Sets the quaternion components from the given axis and angle around that axis.
	 * 
	 * @param axis The axis
	 * @param degrees The angle in degrees
	 * @return This quaternion for chaining. */
	public Quaternion setFromAxis (final Vector3 axis, final float degrees) {
		return setFromAxis(axis.x, axis.y, axis.z, degrees);
	}

	/** Sets the quaternion components from the given axis and angle around that axis.
	 * 
	 * @param axis The axis
	 * @param radians The angle in radians
	 * @return This quaternion for chaining. */
	public Quaternion setFromAxisRad (final Vector3 axis, final float radians) {
		return setFromAxisRad(axis.x, axis.y, axis.z, radians);
	}

	/** Sets the quaternion components from the given axis and angle around that axis.
	 * @param x X direction of the axis
	 * @param y Y direction of the axis
	 * @param z Z direction of the axis
	 * @param degrees The angle in degrees
	 * @return This quaternion for chaining. */
	public Quaternion setFromAxis (final float x, final float y, final float z, final float degrees) {
		return setFromAxisRad(x, y, z, degrees * MathUtils.degreesToRadians);
	}

	/** Sets the quaternion components from the given axis and angle around that axis.
	 * @param x X direction of the axis
	 * @param y Y direction of the axis
	 * @param z Z direction of the axis
	 * @param radians The angle in radians
	 * @return This quaternion for chaining. */
	public Quaternion setFromAxisRad (final float x, final float y, final float z, final float radians) {
		float d = Vector3.len(x, y, z);
		if (d == 0f) return idt();
		d = 1f / d;
		float l_ang = radians < 0 ? MathUtils.PI2 - (-radians % MathUtils.PI2) : radians % MathUtils.PI2;
		float l_sin = (float)Math.sin(l_ang / 2);
		float l_cos = (float)Math.cos(l_ang / 2);
		return this.set(d * x * l_sin, d * y * l_sin, d * z * l_sin, l_cos).nor();
	}

	/** Sets the Quaternion from the given matrix, optionally removing any scaling. */
	public Quaternion setFromMatrix (boolean normalizeAxes, Matrix4 matrix) {
		return setFromAxes(normalizeAxes, matrix.val[Matrix4.M00], matrix.val[Matrix4.M01], matrix.val[Matrix4.M02],
			matrix.val[Matrix4.M10], matrix.val[Matrix4.M11], matrix.val[Matrix4.M12], matrix.val[Matrix4.M20],
			matrix.val[Matrix4.M21], matrix.val[Matrix4.M22]);
	}

	/** Sets the Quaternion from the given rotation matrix, which must not contain scaling. */
	public Quaternion setFromMatrix (Matrix4 matrix) {
		return setFromMatrix(false, matrix);
	}

	/** Sets the Quaternion from the given matrix, optionally removing any scaling. */
	public Quaternion setFromMatrix (boolean normalizeAxes, Matrix3 matrix) {
		return setFromAxes(normalizeAxes, matrix.val[Matrix3.M00], matrix.val[Matrix3.M01], matrix.val[Matrix3.M02],
			matrix.val[Matrix3.M10], matrix.val[Matrix3.M11], matrix.val[Matrix3.M12], matrix.val[Matrix3.M20],
			matrix.val[Matrix3.M21], matrix.val[Matrix3.M22]);
	}

	/** Sets the Quaternion from the given rotation matrix, which must not contain scaling. */
	public Quaternion setFromMatrix (Matrix3 matrix) {
		return setFromMatrix(false, matrix);
	}

	/** 

* Sets the Quaternion from the given x-, y- and z-axis which have to be orthonormal. *

* *

* Taken from Bones framework for JPCT, see http://www.aptalkarga.com/bones/ which in turn took it from Graphics Gem code at * ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/quatut.ps.Z. *

* * @param xx x-axis x-coordinate * @param xy x-axis y-coordinate * @param xz x-axis z-coordinate * @param yx y-axis x-coordinate * @param yy y-axis y-coordinate * @param yz y-axis z-coordinate * @param zx z-axis x-coordinate * @param zy z-axis y-coordinate * @param zz z-axis z-coordinate */ public Quaternion setFromAxes (float xx, float xy, float xz, float yx, float yy, float yz, float zx, float zy, float zz) { return setFromAxes(false, xx, xy, xz, yx, yy, yz, zx, zy, zz); } /**

* Sets the Quaternion from the given x-, y- and z-axis. *

* *

* Taken from Bones framework for JPCT, see http://www.aptalkarga.com/bones/ which in turn took it from Graphics Gem code at * ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/quatut.ps.Z. *

* * @param normalizeAxes whether to normalize the axes (necessary when they contain scaling) * @param xx x-axis x-coordinate * @param xy x-axis y-coordinate * @param xz x-axis z-coordinate * @param yx y-axis x-coordinate * @param yy y-axis y-coordinate * @param yz y-axis z-coordinate * @param zx z-axis x-coordinate * @param zy z-axis y-coordinate * @param zz z-axis z-coordinate */ public Quaternion setFromAxes (boolean normalizeAxes, float xx, float xy, float xz, float yx, float yy, float yz, float zx, float zy, float zz) { if (normalizeAxes) { final float lx = 1f / Vector3.len(xx, xy, xz); final float ly = 1f / Vector3.len(yx, yy, yz); final float lz = 1f / Vector3.len(zx, zy, zz); xx *= lx; xy *= lx; xz *= lx; yx *= ly; yy *= ly; yz *= ly; zx *= lz; zy *= lz; zz *= lz; } // the trace is the sum of the diagonal elements; see // http://mathworld.wolfram.com/MatrixTrace.html final float t = xx + yy + zz; // we protect the division by s by ensuring that s>=1 if (t >= 0) { // |w| >= .5 float s = (float)Math.sqrt(t + 1); // |s|>=1 ... w = 0.5f * s; s = 0.5f / s; // so this division isn't bad x = (zy - yz) * s; y = (xz - zx) * s; z = (yx - xy) * s; } else if ((xx > yy) && (xx > zz)) { float s = (float)Math.sqrt(1.0 + xx - yy - zz); // |s|>=1 x = s * 0.5f; // |x| >= .5 s = 0.5f / s; y = (yx + xy) * s; z = (xz + zx) * s; w = (zy - yz) * s; } else if (yy > zz) { float s = (float)Math.sqrt(1.0 + yy - xx - zz); // |s|>=1 y = s * 0.5f; // |y| >= .5 s = 0.5f / s; x = (yx + xy) * s; z = (zy + yz) * s; w = (xz - zx) * s; } else { float s = (float)Math.sqrt(1.0 + zz - xx - yy); // |s|>=1 z = s * 0.5f; // |z| >= .5 s = 0.5f / s; x = (xz + zx) * s; y = (zy + yz) * s; w = (yx - xy) * s; } return this; } /** Set this quaternion to the rotation between two vectors. * @param v1 The base vector, which should be normalized. * @param v2 The target vector, which should be normalized. * @return This quaternion for chaining */ public Quaternion setFromCross (final Vector3 v1, final Vector3 v2) { final float dot = MathUtils.clamp(v1.dot(v2), -1f, 1f); final float angle = (float)Math.acos(dot); return setFromAxisRad(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z, v1.x * v2.y - v1.y * v2.x, angle); } /** Set this quaternion to the rotation between two vectors. * @param x1 The base vectors x value, which should be normalized. * @param y1 The base vectors y value, which should be normalized. * @param z1 The base vectors z value, which should be normalized. * @param x2 The target vector x value, which should be normalized. * @param y2 The target vector y value, which should be normalized. * @param z2 The target vector z value, which should be normalized. * @return This quaternion for chaining */ public Quaternion setFromCross (final float x1, final float y1, final float z1, final float x2, final float y2, final float z2) { final float dot = MathUtils.clamp(Vector3.dot(x1, y1, z1, x2, y2, z2), -1f, 1f); final float angle = (float)Math.acos(dot); return setFromAxisRad(y1 * z2 - z1 * y2, z1 * x2 - x1 * z2, x1 * y2 - y1 * x2, angle); } /** Spherical linear interpolation between this quaternion and the other quaternion, based on the alpha value in the range * [0,1]. Taken from. Taken from Bones framework for JPCT, see http://www.aptalkarga.com/bones/ * @param end the end quaternion * @param alpha alpha in the range [0,1] * @return this quaternion for chaining */ public Quaternion slerp (Quaternion end, float alpha) { final float d = this.x * end.x + this.y * end.y + this.z * end.z + this.w * end.w; float absDot = d < 0.f ? -d : d; // Set the first and second scale for the interpolation float scale0 = 1f - alpha; float scale1 = alpha; // Check if the angle between the 2 quaternions was big enough to // warrant such calculations if ((1 - absDot) > 0.1) {// Get the angle between the 2 quaternions, // and then store the sin() of that angle final float angle = (float)Math.acos(absDot); final float invSinTheta = 1f / (float)Math.sin(angle); // Calculate the scale for q1 and q2, according to the angle and // it's sine value scale0 = ((float)Math.sin((1f - alpha) * angle) * invSinTheta); scale1 = ((float)Math.sin((alpha * angle)) * invSinTheta); } if (d < 0.f) scale1 = -scale1; // Calculate the x, y, z and w values for the quaternion by using a // special form of linear interpolation for quaternions. x = (scale0 * x) + (scale1 * end.x); y = (scale0 * y) + (scale1 * end.y); z = (scale0 * z) + (scale1 * end.z); w = (scale0 * w) + (scale1 * end.w); // Return the interpolated quaternion return this; } /** * Spherical linearly interpolates multiple quaternions and stores the result in this Quaternion. * Will not destroy the data previously inside the elements of q. * result = (q_1^w_1)*(q_2^w_2)* ... *(q_n^w_n) where w_i=1/n. * @param q List of quaternions * @return This quaternion for chaining */ public Quaternion slerp (Quaternion[] q) { //Calculate exponents and multiply everything from left to right final float w = 1.0f/q.length; set(q[0]).exp(w); for(int i=1;i This will normalize this quaternion if needed. The * received axis is a unit vector. However, if this is an identity quaternion (no rotation), then the length of the axis may be * zero. * * @param axis vector which will receive the axis * @return the angle in degrees * @see wikipedia * @see calculation */ public float getAxisAngle (Vector3 axis) { return getAxisAngleRad(axis) * MathUtils.radiansToDegrees; } /** Get the axis-angle representation of the rotation in radians. The supplied vector will receive the axis (x, y and z values) * of the rotation and the value returned is the angle in radians around that axis. Note that this method will alter the * supplied vector, the existing value of the vector is ignored.

This will normalize this quaternion if needed. The * received axis is a unit vector. However, if this is an identity quaternion (no rotation), then the length of the axis may be * zero. * * @param axis vector which will receive the axis * @return the angle in radians * @see wikipedia * @see calculation */ public float getAxisAngleRad (Vector3 axis) { if (this.w > 1) this.nor(); // if w>1 acos and sqrt will produce errors, this cant happen if quaternion is normalised float angle = (float)(2.0 * Math.acos(this.w)); double s = Math.sqrt(1 - this.w * this.w); // assuming quaternion normalised then w is less than 1, so term always positive. if (s < MathUtils.FLOAT_ROUNDING_ERROR) { // test to avoid divide by zero, s is always positive due to sqrt // if s close to zero then direction of axis not important axis.x = this.x; // if it is important that axis is normalised then replace with x=1; y=z=0; axis.y = this.y; axis.z = this.z; } else { axis.x = (float)(this.x / s); // normalise axis axis.y = (float)(this.y / s); axis.z = (float)(this.z / s); } return angle; } /** Get the angle in radians of the rotation this quaternion represents. Does not normalize the quaternion. Use * {@link #getAxisAngleRad(Vector3)} to get both the axis and the angle of this rotation. Use * {@link #getAngleAroundRad(Vector3)} to get the angle around a specific axis. * @return the angle in radians of the rotation */ public float getAngleRad () { return (float)(2.0 * Math.acos((this.w > 1) ? (this.w / len()) : this.w)); } /** Get the angle in degrees of the rotation this quaternion represents. Use {@link #getAxisAngle(Vector3)} to get both the axis * and the angle of this rotation. Use {@link #getAngleAround(Vector3)} to get the angle around a specific axis. * @return the angle in degrees of the rotation */ public float getAngle () { return getAngleRad() * MathUtils.radiansToDegrees; } /** Get the swing rotation and twist rotation for the specified axis. The twist rotation represents the rotation around the * specified axis. The swing rotation represents the rotation of the specified axis itself, which is the rotation around an * axis perpendicular to the specified axis. *

* The swing and twist rotation can be used to reconstruct the original quaternion: this = swing * twist * * @param axisX the X component of the normalized axis for which to get the swing and twist rotation * @param axisY the Y component of the normalized axis for which to get the swing and twist rotation * @param axisZ the Z component of the normalized axis for which to get the swing and twist rotation * @param swing will receive the swing rotation: the rotation around an axis perpendicular to the specified axis * @param twist will receive the twist rotation: the rotation around the specified axis * @see calculation */ public void getSwingTwist (final float axisX, final float axisY, final float axisZ, final Quaternion swing, final Quaternion twist) { final float d = Vector3.dot(this.x, this.y, this.z, axisX, axisY, axisZ); twist.set(axisX * d, axisY * d, axisZ * d, this.w).nor(); swing.set(twist).conjugate().mulLeft(this); } /** Get the swing rotation and twist rotation for the specified axis. The twist rotation represents the rotation around the * specified axis. The swing rotation represents the rotation of the specified axis itself, which is the rotation around an * axis perpendicular to the specified axis. *

* The swing and twist rotation can be used to reconstruct the original quaternion: this = swing * twist * * @param axis the normalized axis for which to get the swing and twist rotation * @param swing will receive the swing rotation: the rotation around an axis perpendicular to the specified axis * @param twist will receive the twist rotation: the rotation around the specified axis * @see calculation */ public void getSwingTwist (final Vector3 axis, final Quaternion swing, final Quaternion twist) { getSwingTwist(axis.x, axis.y, axis.z, swing, twist); } /** Get the angle in radians of the rotation around the specified axis. The axis must be normalized. * @param axisX the x component of the normalized axis for which to get the angle * @param axisY the y component of the normalized axis for which to get the angle * @param axisZ the z component of the normalized axis for which to get the angle * @return the angle in radians of the rotation around the specified axis */ public float getAngleAroundRad (final float axisX, final float axisY, final float axisZ) { final float d = Vector3.dot(this.x, this.y, this.z, axisX, axisY, axisZ); final float l2 = Quaternion.len2(axisX * d, axisY * d, axisZ * d, this.w); return MathUtils.isZero(l2) ? 0f : (float)(2.0 * Math.acos(MathUtils.clamp((float) (this.w / Math.sqrt(l2)), -1f, 1f))); } /** Get the angle in radians of the rotation around the specified axis. The axis must be normalized. * @param axis the normalized axis for which to get the angle * @return the angle in radians of the rotation around the specified axis */ public float getAngleAroundRad (final Vector3 axis) { return getAngleAroundRad(axis.x, axis.y, axis.z); } /** Get the angle in degrees of the rotation around the specified axis. The axis must be normalized. * @param axisX the x component of the normalized axis for which to get the angle * @param axisY the y component of the normalized axis for which to get the angle * @param axisZ the z component of the normalized axis for which to get the angle * @return the angle in degrees of the rotation around the specified axis */ public float getAngleAround (final float axisX, final float axisY, final float axisZ) { return getAngleAroundRad(axisX, axisY, axisZ) * MathUtils.radiansToDegrees; } /** Get the angle in degrees of the rotation around the specified axis. The axis must be normalized. * @param axis the normalized axis for which to get the angle * @return the angle in degrees of the rotation around the specified axis */ public float getAngleAround (final Vector3 axis) { return getAngleAround(axis.x, axis.y, axis.z); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy