All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.barchart.http.util.Base64 Maven / Gradle / Ivy

There is a newer version: 1.1.6
Show newest version
/**
 * Copyright (C) 2011-2013 Barchart, Inc. 
 *
 * All rights reserved. Licensed under the OSI BSD License.
 *
 * http://www.opensource.org/licenses/bsd-license.php
 */
package com.barchart.http.util;

import java.util.Arrays;

/**
 * A very fast and memory efficient class to encode and decode to and from
 * BASE64 in full accordance with RFC 2045.
*
* On Windows XP sp1 with 1.4.2_04 and later ;), this encoder and decoder is * about 10 times faster on small arrays (10 - 1000 bytes) and 2-3 times as fast * on larger arrays (10000 - 1000000 bytes) compared to * sun.misc.Encoder()/Decoder().
*
* * On byte arrays the encoder is about 20% faster than Jakarta Commons Base64 * Codec for encode and about 50% faster for decoding large arrays. This * implementation is about twice as fast on very small arrays (< 30 bytes). If * source/destination is a String this version is about three times * as fast due to the fact that the Commons Codec result has to be recoded to a * String from byte[], which is very expensive.
*
* * This encode/decode algorithm doesn't create any temporary arrays as many * other codecs do, it only allocates the resulting array. This produces less * garbage and it is possible to handle arrays twice as large as algorithms that * create a temporary array. (E.g. Jakarta Commons Codec). It is unknown whether * Sun's sun.misc.Encoder()/Decoder() produce temporary arrays but * since performance is quite low it probably does.
*
* * The encoder produces the same output as the Sun one except that the Sun's * encoder appends a trailing line separator if the last character isn't a pad. * Unclear why but it only adds to the length and is probably a side effect. * Both are in conformance with RFC 2045 though.
* Commons codec seem to always att a trailing line separator.
*
* * Note! The encode/decode method pairs (types) come in three versions * with the exact same algorithm and thus a lot of code redundancy. This * is to not create any temporary arrays for transcoding to/from different * format types. The methods not used can simply be commented out.
*
* * There is also a "fast" version of all decode methods that works the same way * as the normal ones, but har a few demands on the decoded input. Normally * though, these fast verions should be used if the source if the input is known * and it hasn't bee tampered with.
*
* * If you find the code useful or you find a bug, please send me a note at * base64 @ miginfocom . com. * * Licence (BSD): ============== * * Copyright (c) 2004, Mikael Grev, MiG InfoCom AB. (base64 @ miginfocom . com) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. Redistributions in binary * form must reproduce the above copyright notice, this list of conditions and * the following disclaimer in the documentation and/or other materials provided * with the distribution. Neither the name of the MiG InfoCom AB nor the names * of its contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * @version 2.2 * @author Mikael Grev Date: 2004-aug-02 Time: 11:31:11 */ public class Base64 { private static final char[] CA = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" .toCharArray(); private static final int[] IA = new int[256]; static { Arrays.fill(IA, -1); for (int i = 0, iS = CA.length; i < iS; i++) { IA[CA[i]] = i; } IA['='] = 0; } // **************************************************************************************** // * char[] version // **************************************************************************************** /** * Encodes a raw byte array into a BASE64 char[] representation * i accordance with RFC 2045. * * @param sArr * The bytes to convert. If null or length 0 an * empty array will be returned. * @param lineSep * Optional "\r\n" after 76 characters, unless end of file.
* No line separator will be in breach of RFC 2045 which * specifies max 76 per line but will be a little faster. * @return A BASE64 encoded array. Never null. */ public final static char[] encodeToChar(final byte[] sArr, final boolean lineSep) { // Check special case final int sLen = sArr != null ? sArr.length : 0; if (sLen == 0) { return new char[0]; } final int eLen = (sLen / 3) * 3; // Length of even 24-bits. final int cCnt = ((sLen - 1) / 3 + 1) << 2; // Returned character count final int dLen = cCnt + (lineSep ? (cCnt - 1) / 76 << 1 : 0); // Length // of // returned // array final char[] dArr = new char[dLen]; // Encode even 24-bits for (int s = 0, d = 0, cc = 0; s < eLen;) { // Copy next three bytes into lower 24 bits of int, paying attension // to sign. final int i = (sArr[s++] & 0xff) << 16 | (sArr[s++] & 0xff) << 8 | (sArr[s++] & 0xff); // Encode the int into four chars dArr[d++] = CA[(i >>> 18) & 0x3f]; dArr[d++] = CA[(i >>> 12) & 0x3f]; dArr[d++] = CA[(i >>> 6) & 0x3f]; dArr[d++] = CA[i & 0x3f]; // Add optional line separator if (lineSep && ++cc == 19 && d < dLen - 2) { dArr[d++] = '\r'; dArr[d++] = '\n'; cc = 0; } } // Pad and encode last bits if source isn't even 24 bits. final int left = sLen - eLen; // 0 - 2. if (left > 0) { // Prepare the int final int i = ((sArr[eLen] & 0xff) << 10) | (left == 2 ? ((sArr[sLen - 1] & 0xff) << 2) : 0); // Set last four chars dArr[dLen - 4] = CA[i >> 12]; dArr[dLen - 3] = CA[(i >>> 6) & 0x3f]; dArr[dLen - 2] = left == 2 ? CA[i & 0x3f] : '='; dArr[dLen - 1] = '='; } return dArr; } /** * Decodes a BASE64 encoded char array. All illegal characters will be * ignored and can handle both arrays with and without line separators. * * @param sArr * The source array. null or length 0 will return an * empty array. * @return The decoded array of bytes. May be of length 0. Will be * null if the legal characters (including '=') isn't * divideable by 4. (I.e. definitely corrupted). */ public final static byte[] decode(final char[] sArr) { // Check special case final int sLen = sArr != null ? sArr.length : 0; if (sLen == 0) { return new byte[0]; } // Count illegal characters (including '\r', '\n') to know what size the // returned array will be, // so we don't have to reallocate & copy it later. int sepCnt = 0; // Number of separator characters. (Actually illegal // characters, but that's a bonus...) for (int i = 0; i < sLen; i++) { if (IA[sArr[i]] < 0) { sepCnt++; } } // Check so that legal chars (including '=') are evenly divideable by 4 // as specified in RFC 2045. if ((sLen - sepCnt) % 4 != 0) { return null; } int pad = 0; for (int i = sLen; i > 1 && IA[sArr[--i]] <= 0;) { if (sArr[i] == '=') { pad++; } } final int len = ((sLen - sepCnt) * 6 >> 3) - pad; final byte[] dArr = new byte[len]; // Preallocate byte[] of exact length for (int s = 0, d = 0; d < len;) { // Assemble three bytes into an int from four "valid" characters. int i = 0; for (int j = 0; j < 4; j++) { // j only increased if a valid char // was found. final int c = IA[sArr[s++]]; if (c >= 0) { i |= c << (18 - j * 6); } else { j--; } } // Add the bytes dArr[d++] = (byte) (i >> 16); if (d < len) { dArr[d++] = (byte) (i >> 8); if (d < len) { dArr[d++] = (byte) i; } } } return dArr; } /** * Decodes a BASE64 encoded char array that is known to be resonably well * formatted. The method is about twice as fast as {@link #decode(char[])}. * The preconditions are:
* + The array must have a line length of 76 chars OR no line separators at * all (one line).
* + Line separator must be "\r\n", as specified in RFC 2045 + The array * must not contain illegal characters within the encoded string
* + The array CAN have illegal characters at the beginning and end, those * will be dealt with appropriately.
* * @param sArr * The source array. Length 0 will return an empty array. * null will throw an exception. * @return The decoded array of bytes. May be of length 0. */ public final static byte[] decodeFast(final char[] sArr) { // Check special case final int sLen = sArr.length; if (sLen == 0) { return new byte[0]; } int sIx = 0, eIx = sLen - 1; // Start and end index after trimming. // Trim illegal chars from start while (sIx < eIx && IA[sArr[sIx]] < 0) { sIx++; } // Trim illegal chars from end while (eIx > 0 && IA[sArr[eIx]] < 0) { eIx--; } // get the padding count (=) (0, 1 or 2) final int pad = sArr[eIx] == '=' ? (sArr[eIx - 1] == '=' ? 2 : 1) : 0; // Count // '=' // at // end. final int cCnt = eIx - sIx + 1; // Content count including possible // separators final int sepCnt = sLen > 76 ? (sArr[76] == '\r' ? cCnt / 78 : 0) << 1 : 0; final int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of // decoded bytes final byte[] dArr = new byte[len]; // Preallocate byte[] of exact length // Decode all but the last 0 - 2 bytes. int d = 0; for (int cc = 0, eLen = (len / 3) * 3; d < eLen;) { // Assemble three bytes into an int from four "valid" characters. final int i = IA[sArr[sIx++]] << 18 | IA[sArr[sIx++]] << 12 | IA[sArr[sIx++]] << 6 | IA[sArr[sIx++]]; // Add the bytes dArr[d++] = (byte) (i >> 16); dArr[d++] = (byte) (i >> 8); dArr[d++] = (byte) i; // If line separator, jump over it. if (sepCnt > 0 && ++cc == 19) { sIx += 2; cc = 0; } } if (d < len) { // Decode last 1-3 bytes (incl '=') into 1-3 bytes int i = 0; for (int j = 0; sIx <= eIx - pad; j++) { i |= IA[sArr[sIx++]] << (18 - j * 6); } for (int r = 16; d < len; r -= 8) { dArr[d++] = (byte) (i >> r); } } return dArr; } // **************************************************************************************** // * byte[] version // **************************************************************************************** /** * Encodes a raw byte array into a BASE64 byte[] representation * i accordance with RFC 2045. * * @param sArr * The bytes to convert. If null or length 0 an * empty array will be returned. * @param lineSep * Optional "\r\n" after 76 characters, unless end of file.
* No line separator will be in breach of RFC 2045 which * specifies max 76 per line but will be a little faster. * @return A BASE64 encoded array. Never null. */ public final static byte[] encodeToByte(final byte[] sArr, final boolean lineSep) { // Check special case final int sLen = sArr != null ? sArr.length : 0; if (sLen == 0) { return new byte[0]; } final int eLen = (sLen / 3) * 3; // Length of even 24-bits. final int cCnt = ((sLen - 1) / 3 + 1) << 2; // Returned character count final int dLen = cCnt + (lineSep ? (cCnt - 1) / 76 << 1 : 0); // Length // of // returned // array final byte[] dArr = new byte[dLen]; // Encode even 24-bits for (int s = 0, d = 0, cc = 0; s < eLen;) { // Copy next three bytes into lower 24 bits of int, paying attension // to sign. final int i = (sArr[s++] & 0xff) << 16 | (sArr[s++] & 0xff) << 8 | (sArr[s++] & 0xff); // Encode the int into four chars dArr[d++] = (byte) CA[(i >>> 18) & 0x3f]; dArr[d++] = (byte) CA[(i >>> 12) & 0x3f]; dArr[d++] = (byte) CA[(i >>> 6) & 0x3f]; dArr[d++] = (byte) CA[i & 0x3f]; // Add optional line separator if (lineSep && ++cc == 19 && d < dLen - 2) { dArr[d++] = '\r'; dArr[d++] = '\n'; cc = 0; } } // Pad and encode last bits if source isn't an even 24 bits. final int left = sLen - eLen; // 0 - 2. if (left > 0) { // Prepare the int final int i = ((sArr[eLen] & 0xff) << 10) | (left == 2 ? ((sArr[sLen - 1] & 0xff) << 2) : 0); // Set last four chars dArr[dLen - 4] = (byte) CA[i >> 12]; dArr[dLen - 3] = (byte) CA[(i >>> 6) & 0x3f]; dArr[dLen - 2] = left == 2 ? (byte) CA[i & 0x3f] : (byte) '='; dArr[dLen - 1] = '='; } return dArr; } /** * Decodes a BASE64 encoded byte array. All illegal characters will be * ignored and can handle both arrays with and without line separators. * * @param sArr * The source array. Length 0 will return an empty array. * null will throw an exception. * @return The decoded array of bytes. May be of length 0. Will be * null if the legal characters (including '=') isn't * divideable by 4. (I.e. definitely corrupted). */ public final static byte[] decode(final byte[] sArr) { // Check special case final int sLen = sArr.length; // Count illegal characters (including '\r', '\n') to know what size the // returned array will be, // so we don't have to reallocate & copy it later. int sepCnt = 0; // Number of separator characters. (Actually illegal // characters, but that's a bonus...) for (int i = 0; i < sLen; i++) { if (IA[sArr[i] & 0xff] < 0) { sepCnt++; } } // Check so that legal chars (including '=') are evenly divideable by 4 // as specified in RFC 2045. if ((sLen - sepCnt) % 4 != 0) { return null; } int pad = 0; for (int i = sLen; i > 1 && IA[sArr[--i] & 0xff] <= 0;) { if (sArr[i] == '=') { pad++; } } final int len = ((sLen - sepCnt) * 6 >> 3) - pad; final byte[] dArr = new byte[len]; // Preallocate byte[] of exact length for (int s = 0, d = 0; d < len;) { // Assemble three bytes into an int from four "valid" characters. int i = 0; for (int j = 0; j < 4; j++) { // j only increased if a valid char // was found. final int c = IA[sArr[s++] & 0xff]; if (c >= 0) { i |= c << (18 - j * 6); } else { j--; } } // Add the bytes dArr[d++] = (byte) (i >> 16); if (d < len) { dArr[d++] = (byte) (i >> 8); if (d < len) { dArr[d++] = (byte) i; } } } return dArr; } /** * Decodes a BASE64 encoded byte array that is known to be resonably well * formatted. The method is about twice as fast as {@link #decode(byte[])}. * The preconditions are:
* + The array must have a line length of 76 chars OR no line separators at * all (one line).
* + Line separator must be "\r\n", as specified in RFC 2045 + The array * must not contain illegal characters within the encoded string
* + The array CAN have illegal characters at the beginning and end, those * will be dealt with appropriately.
* * @param sArr * The source array. Length 0 will return an empty array. * null will throw an exception. * @return The decoded array of bytes. May be of length 0. */ public final static byte[] decodeFast(final byte[] sArr) { // Check special case final int sLen = sArr.length; if (sLen == 0) { return new byte[0]; } int sIx = 0, eIx = sLen - 1; // Start and end index after trimming. // Trim illegal chars from start while (sIx < eIx && IA[sArr[sIx] & 0xff] < 0) { sIx++; } // Trim illegal chars from end while (eIx > 0 && IA[sArr[eIx] & 0xff] < 0) { eIx--; } // get the padding count (=) (0, 1 or 2) final int pad = sArr[eIx] == '=' ? (sArr[eIx - 1] == '=' ? 2 : 1) : 0; // Count // '=' // at // end. final int cCnt = eIx - sIx + 1; // Content count including possible // separators final int sepCnt = sLen > 76 ? (sArr[76] == '\r' ? cCnt / 78 : 0) << 1 : 0; final int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of // decoded bytes final byte[] dArr = new byte[len]; // Preallocate byte[] of exact length // Decode all but the last 0 - 2 bytes. int d = 0; for (int cc = 0, eLen = (len / 3) * 3; d < eLen;) { // Assemble three bytes into an int from four "valid" characters. final int i = IA[sArr[sIx++]] << 18 | IA[sArr[sIx++]] << 12 | IA[sArr[sIx++]] << 6 | IA[sArr[sIx++]]; // Add the bytes dArr[d++] = (byte) (i >> 16); dArr[d++] = (byte) (i >> 8); dArr[d++] = (byte) i; // If line separator, jump over it. if (sepCnt > 0 && ++cc == 19) { sIx += 2; cc = 0; } } if (d < len) { // Decode last 1-3 bytes (incl '=') into 1-3 bytes int i = 0; for (int j = 0; sIx <= eIx - pad; j++) { i |= IA[sArr[sIx++]] << (18 - j * 6); } for (int r = 16; d < len; r -= 8) { dArr[d++] = (byte) (i >> r); } } return dArr; } // **************************************************************************************** // * String version // **************************************************************************************** /** * Encodes a raw byte array into a BASE64 String representation * i accordance with RFC 2045. * * @param sArr * The bytes to convert. If null or length 0 an * empty array will be returned. * @param lineSep * Optional "\r\n" after 76 characters, unless end of file.
* No line separator will be in breach of RFC 2045 which * specifies max 76 per line but will be a little faster. * @return A BASE64 encoded array. Never null. */ public final static String encodeToString(final byte[] sArr, final boolean lineSep) { // Reuse char[] since we can't create a String incrementally anyway and // StringBuffer/Builder would be slower. return new String(encodeToChar(sArr, lineSep)); } /** * Decodes a BASE64 encoded String. All illegal characters will * be ignored and can handle both strings with and without line separators.
* Note! It can be up to about 2x the speed to call * decode(str.toCharArray()) instead. That will create a * temporary array though. This version will use str.charAt(i) * to iterate the string. * * @param str * The source string. null or length 0 will return * an empty array. * @return The decoded array of bytes. May be of length 0. Will be * null if the legal characters (including '=') isn't * divideable by 4. (I.e. definitely corrupted). */ public final static byte[] decode(final String str) { // Check special case final int sLen = str != null ? str.length() : 0; if (sLen == 0) { return new byte[0]; } // Count illegal characters (including '\r', '\n') to know what size the // returned array will be, // so we don't have to reallocate & copy it later. int sepCnt = 0; // Number of separator characters. (Actually illegal // characters, but that's a bonus...) for (int i = 0; i < sLen; i++) { if (IA[str.charAt(i)] < 0) { sepCnt++; } } // Check so that legal chars (including '=') are evenly divideable by 4 // as specified in RFC 2045. if ((sLen - sepCnt) % 4 != 0) { return null; } // Count '=' at end int pad = 0; for (int i = sLen; i > 1 && IA[str.charAt(--i)] <= 0;) { if (str.charAt(i) == '=') { pad++; } } final int len = ((sLen - sepCnt) * 6 >> 3) - pad; final byte[] dArr = new byte[len]; // Preallocate byte[] of exact length for (int s = 0, d = 0; d < len;) { // Assemble three bytes into an int from four "valid" characters. int i = 0; for (int j = 0; j < 4; j++) { // j only increased if a valid char // was found. final int c = IA[str.charAt(s++)]; if (c >= 0) { i |= c << (18 - j * 6); } else { j--; } } // Add the bytes dArr[d++] = (byte) (i >> 16); if (d < len) { dArr[d++] = (byte) (i >> 8); if (d < len) { dArr[d++] = (byte) i; } } } return dArr; } /** * Decodes a BASE64 encoded string that is known to be resonably well * formatted. The method is about twice as fast as {@link #decode(String)}. * The preconditions are:
* + The array must have a line length of 76 chars OR no line separators at * all (one line).
* + Line separator must be "\r\n", as specified in RFC 2045 + The array * must not contain illegal characters within the encoded string
* + The array CAN have illegal characters at the beginning and end, those * will be dealt with appropriately.
* * @param s * The source string. Length 0 will return an empty array. * null will throw an exception. * @return The decoded array of bytes. May be of length 0. */ public final static byte[] decodeFast(final String s) { // Check special case final int sLen = s.length(); if (sLen == 0) { return new byte[0]; } int sIx = 0, eIx = sLen - 1; // Start and end index after trimming. // Trim illegal chars from start while (sIx < eIx && IA[s.charAt(sIx) & 0xff] < 0) { sIx++; } // Trim illegal chars from end while (eIx > 0 && IA[s.charAt(eIx) & 0xff] < 0) { eIx--; } // get the padding count (=) (0, 1 or 2) final int pad = s.charAt(eIx) == '=' ? (s.charAt(eIx - 1) == '=' ? 2 : 1) : 0; // Count // '=' // at // end. final int cCnt = eIx - sIx + 1; // Content count including possible // separators final int sepCnt = sLen > 76 ? (s.charAt(76) == '\r' ? cCnt / 78 : 0) << 1 : 0; final int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of // decoded bytes final byte[] dArr = new byte[len]; // Preallocate byte[] of exact length // Decode all but the last 0 - 2 bytes. int d = 0; for (int cc = 0, eLen = (len / 3) * 3; d < eLen;) { // Assemble three bytes into an int from four "valid" characters. final int i = IA[s.charAt(sIx++)] << 18 | IA[s.charAt(sIx++)] << 12 | IA[s.charAt(sIx++)] << 6 | IA[s.charAt(sIx++)]; // Add the bytes dArr[d++] = (byte) (i >> 16); dArr[d++] = (byte) (i >> 8); dArr[d++] = (byte) i; // If line separator, jump over it. if (sepCnt > 0 && ++cc == 19) { sIx += 2; cc = 0; } } if (d < len) { // Decode last 1-3 bytes (incl '=') into 1-3 bytes int i = 0; for (int j = 0; sIx <= eIx - pad; j++) { i |= IA[s.charAt(sIx++)] << (18 - j * 6); } for (int r = 16; d < len; r -= 8) { dArr[d++] = (byte) (i >> r); } } return dArr; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy