org.eclipse.jgit.treewalk.NameConflictTreeWalk Maven / Gradle / Ivy
/*
* Copyright (C) 2008, Google Inc.
* and other copyright owners as documented in the project's IP log.
*
* This program and the accompanying materials are made available
* under the terms of the Eclipse Distribution License v1.0 which
* accompanies this distribution, is reproduced below, and is
* available at http://www.eclipse.org/org/documents/edl-v10.php
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* - Neither the name of the Eclipse Foundation, Inc. nor the
* names of its contributors may be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.eclipse.jgit.treewalk;
import org.eclipse.jgit.dircache.DirCacheBuilder;
import org.eclipse.jgit.errors.CorruptObjectException;
import org.eclipse.jgit.lib.FileMode;
import org.eclipse.jgit.lib.ObjectReader;
import org.eclipse.jgit.lib.Repository;
/**
* Specialized TreeWalk to detect directory-file (D/F) name conflicts.
*
* Due to the way a Git tree is organized the standard {@link TreeWalk} won't
* easily find a D/F conflict when merging two or more trees together. In the
* standard TreeWalk the file will be returned first, and then much later the
* directory will be returned. This makes it impossible for the application to
* efficiently detect and handle the conflict.
*
* Using this walk implementation causes the directory to report earlier than
* usual, at the same time as the non-directory entry. This permits the
* application to handle the D/F conflict in a single step. The directory is
* returned only once, so it does not get returned later in the iteration.
*
* When a D/F conflict is detected {@link TreeWalk#isSubtree()} will return true
* and {@link TreeWalk#enterSubtree()} will recurse into the subtree, no matter
* which iterator originally supplied the subtree.
*
* Because conflicted directories report early, using this walk implementation
* to populate a {@link DirCacheBuilder} may cause the automatic resorting to
* run and fix the entry ordering.
*
* This walk implementation requires more CPU to implement a look-ahead and a
* look-behind to merge a D/F pair together, or to skip a previously reported
* directory. In typical Git repositories the look-ahead cost is 0 and the
* look-behind doesn't trigger, as users tend not to create trees which contain
* both "foo" as a directory and "foo.c" as a file.
*
* In the worst-case however several thousand look-ahead steps per walk step may
* be necessary, making the overhead quite significant. Since this worst-case
* should never happen this walk implementation has made the time/space tradeoff
* in favor of more-time/less-space, as that better suits the typical case.
*/
public class NameConflictTreeWalk extends TreeWalk {
private static final int TREE_MODE = FileMode.TREE.getBits();
private boolean fastMinHasMatch;
private AbstractTreeIterator dfConflict;
/**
* Create a new tree walker for a given repository.
*
* @param repo
* the repository the walker will obtain data from.
*/
public NameConflictTreeWalk(final Repository repo) {
this(repo.newObjectReader());
}
/**
* Create a new tree walker for a given repository.
*
* @param or
* the reader the walker will obtain tree data from.
*/
public NameConflictTreeWalk(final ObjectReader or) {
super(or);
}
@Override
AbstractTreeIterator min() throws CorruptObjectException {
for (;;) {
final AbstractTreeIterator minRef = fastMin();
if (fastMinHasMatch)
return minRef;
if (isTree(minRef)) {
if (skipEntry(minRef)) {
for (final AbstractTreeIterator t : trees) {
if (t.matches == minRef) {
t.next(1);
t.matches = null;
}
}
continue;
}
return minRef;
}
return combineDF(minRef);
}
}
private AbstractTreeIterator fastMin() {
fastMinHasMatch = true;
int i = 0;
AbstractTreeIterator minRef = trees[i];
while (minRef.eof() && ++i < trees.length)
minRef = trees[i];
if (minRef.eof())
return minRef;
boolean hasConflict = false;
minRef.matches = minRef;
while (++i < trees.length) {
final AbstractTreeIterator t = trees[i];
if (t.eof())
continue;
final int cmp = t.pathCompare(minRef);
if (cmp < 0) {
if (fastMinHasMatch && isTree(minRef) && !isTree(t)
&& nameEqual(minRef, t)) {
// We used to be at a tree, but now we are at a file
// with the same name. Allow the file to match the
// tree anyway.
//
t.matches = minRef;
hasConflict = true;
} else {
fastMinHasMatch = false;
t.matches = t;
minRef = t;
}
} else if (cmp == 0) {
// Exact name/mode match is best.
//
t.matches = minRef;
} else if (fastMinHasMatch && isTree(t) && !isTree(minRef)
&& nameEqual(t, minRef)) {
// The minimum is a file (non-tree) but the next entry
// of this iterator is a tree whose name matches our file.
// This is a classic D/F conflict and commonly occurs like
// this, with no gaps in between the file and directory.
//
// Use the tree as the minimum instead (see combineDF).
//
for (int k = 0; k < i; k++) {
final AbstractTreeIterator p = trees[k];
if (p.matches == minRef)
p.matches = t;
}
t.matches = t;
minRef = t;
hasConflict = true;
} else
fastMinHasMatch = false;
}
if (hasConflict && fastMinHasMatch && dfConflict == null)
dfConflict = minRef;
return minRef;
}
private static boolean nameEqual(final AbstractTreeIterator a,
final AbstractTreeIterator b) {
return a.pathCompare(b, TREE_MODE) == 0;
}
private static boolean isTree(final AbstractTreeIterator p) {
return FileMode.TREE.equals(p.mode);
}
private boolean skipEntry(final AbstractTreeIterator minRef)
throws CorruptObjectException {
// A tree D/F may have been handled earlier. We need to
// not report this path if it has already been reported.
//
for (final AbstractTreeIterator t : trees) {
if (t.matches == minRef || t.first())
continue;
int stepsBack = 0;
for (;;) {
stepsBack++;
t.back(1);
final int cmp = t.pathCompare(minRef, 0);
if (cmp == 0) {
// We have already seen this "$path" before. Skip it.
//
t.next(stepsBack);
return true;
} else if (cmp < 0 || t.first()) {
// We cannot find "$path" in t; it will never appear.
//
t.next(stepsBack);
break;
}
}
}
// We have never seen the current path before.
//
return false;
}
private AbstractTreeIterator combineDF(final AbstractTreeIterator minRef)
throws CorruptObjectException {
// Look for a possible D/F conflict forward in the tree(s)
// as there may be a "$path/" which matches "$path". Make
// such entries match this entry.
//
AbstractTreeIterator treeMatch = null;
for (final AbstractTreeIterator t : trees) {
if (t.matches == minRef || t.eof())
continue;
for (;;) {
final int cmp = t.pathCompare(minRef, TREE_MODE);
if (cmp < 0) {
// The "$path/" may still appear later.
//
t.matchShift++;
t.next(1);
if (t.eof()) {
t.back(t.matchShift);
t.matchShift = 0;
break;
}
} else if (cmp == 0) {
// We have a conflict match here.
//
t.matches = minRef;
treeMatch = t;
break;
} else {
// A conflict match is not possible.
//
if (t.matchShift != 0) {
t.back(t.matchShift);
t.matchShift = 0;
}
break;
}
}
}
if (treeMatch != null) {
// If we do have a conflict use one of the directory
// matching iterators instead of the file iterator.
// This way isSubtree is true and isRecursive works.
//
for (final AbstractTreeIterator t : trees)
if (t.matches == minRef)
t.matches = treeMatch;
if (dfConflict == null)
dfConflict = treeMatch;
return treeMatch;
}
return minRef;
}
@Override
void popEntriesEqual() throws CorruptObjectException {
final AbstractTreeIterator ch = currentHead;
for (int i = 0; i < trees.length; i++) {
final AbstractTreeIterator t = trees[i];
if (t.matches == ch) {
if (t.matchShift == 0)
t.next(1);
else {
t.back(t.matchShift);
t.matchShift = 0;
}
t.matches = null;
}
}
if (ch == dfConflict)
dfConflict = null;
}
@Override
void skipEntriesEqual() throws CorruptObjectException {
final AbstractTreeIterator ch = currentHead;
for (int i = 0; i < trees.length; i++) {
final AbstractTreeIterator t = trees[i];
if (t.matches == ch) {
if (t.matchShift == 0)
t.skip();
else {
t.back(t.matchShift);
t.matchShift = 0;
}
t.matches = null;
}
}
if (ch == dfConflict)
dfConflict = null;
}
/**
* True if the current entry is covered by a directory/file conflict.
*
* This means that for some prefix of the current entry's path, this walk
* has detected a directory/file conflict. Also true if the current entry
* itself is a directory/file conflict.
*
* Example: If this TreeWalk points to foo/bar/a.txt and this method returns
* true then you know that either for path foo or for path foo/bar files and
* folders were detected.
*
* @return true
if the current entry is covered by a
* directory/file conflict, false
otherwise
*/
public boolean isDirectoryFileConflict() {
return dfConflict != null;
}
}