
com.barrybecker4.optimization.strategy.GlobalHillClimbingStrategy Maven / Gradle / Ivy
/** Copyright by Barry G. Becker, 2000-2011. Licensed under MIT License: http://www.opensource.org/licenses/MIT */
package com.barrybecker4.optimization.strategy;
import com.barrybecker4.optimization.optimizee.Optimizee;
import com.barrybecker4.optimization.parameter.ParameterArray;
/**
* This is a hybrid optimization strategy.
* @see GlobalSampleStrategy
* @see HillClimbingStrategy
*
* @author Barry Becker
*/
public class GlobalHillClimbingStrategy extends OptimizationStrategy {
private static final int NUM_SAMPLES = 1000;
/**
* Constructor.
* use a hardcoded static data interface to initialize.
* so it can be easily run in an applet without using resources.
* @param optimizee the thing to be optimized.
*/
public GlobalHillClimbingStrategy( Optimizee optimizee ) {
super(optimizee);
}
/**
* Perform the optimization of the optimizee.
* @param params parameter array
* @param fitnessRange the approximate absolute value of the fitnessRange.
* @return optimized params
*/
@Override
public ParameterArray doOptimization( ParameterArray params, double fitnessRange ) {
GlobalSampleStrategy gsStrategy = new GlobalSampleStrategy(optimizee_);
gsStrategy.setListener(listener_);
// 3 sample points along each dimension
gsStrategy.setSamplingRate(NUM_SAMPLES);
// first find a good place to start
// perhaps we should try several of the better results from global sampling.
ParameterArray sampledParams = gsStrategy.doOptimization(params, fitnessRange);
OptimizationStrategy strategy = new HillClimbingStrategy(optimizee_);
strategy.setListener(listener_);
return strategy.doOptimization(sampledParams, fitnessRange);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy