it.unimi.dsi.compression.HuTuckerCodec Maven / Gradle / Ivy
Show all versions of dsi-utils Show documentation
package it.unimi.dsi.compression;
/*
* DSI utilities
*
* Copyright (C) 2005-2009 Sebastiano Vigna
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the Free
* Software Foundation; either version 2.1 of the License, or (at your option)
* any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*/
import it.unimi.dsi.bits.BitVector;
import it.unimi.dsi.fastutil.booleans.BooleanArrays;
import java.io.Serializable;
/** An implementation of the Hu–Tucker optimal lexicographical prefix-free code.
*
* The familiar Huffman coding technique can be extended so to preserve the order in which
* symbols are given to the coder, in the sense that if j<k, then the
* j-th symbol will get a code lexicographically smaller than the one
* assigned to the k-th symbol. This result can be obtained with a small loss in
* code length (for more details, see the third volume of The Art of Computer Programming).
*
*
A Hu–Tucker coder is built given an array of frequencies corresponding to each
* symbol. Frequency 0 symbols are allowed, but they will degrade the resulting code.
*
*
The implementation of this class is rather inefficient, and the time required to build
* a Hu–Tucker code is quadratic in the number of symbols.
* An O(n log n) implementation
* is possible, but it requires very sophisticated data structures.
*/
public class HuTuckerCodec implements PrefixCodec, Serializable {
private static final boolean DEBUG = false;
private static final long serialVersionUID = 2L;
/** The number of symbols of this coder. */
public final int size;
/** The root of the decoding tree. */
private final TreeDecoder.Node root;
/** A cached singleton instance of the coder of this codec. */
private final CodeWordCoder coder;
/** A cached singleton instance of the decoder of this codec. */
private final TreeDecoder decoder;
/** A node to be used for the tree construction: it records both the level and the index. */
private static final class LevelNode extends TreeDecoder.LeafNode {
private static final long serialVersionUID = 1L;
int level;
private LevelNode( final int symbol ) {
super( symbol );
}
private LevelNode() {
super( -1 );
}
}
private static long[] intArray2LongArray( final int a[] ) {
final long[] b = new long[ a.length ];
for( int i = a.length; i-- != 0; ) b[ i ] = a[ i ];
return b;
}
public HuTuckerCodec( final int[] frequency ) {
this( intArray2LongArray( frequency ) );
}
public HuTuckerCodec( final long[] frequency ) {
size = frequency.length;
final boolean[] internal = new boolean[ size ];
final boolean[] removed = new boolean[ size ];
final long[] compoundFrequency = new long[ size ];
final LevelNode[] externalNode = new LevelNode[ size ], node = new LevelNode[ size ];
long currPri;
int first, last, left, right, minLeft, minRight;
LevelNode n;
// We create a node with level information for each symbol
for( int i = size; i-- != 0; ) {
compoundFrequency[ i ] = frequency[ i ];
node[ i ] = externalNode[ i ] = new LevelNode( i );
}
first = 0;
last = size - 1;
minLeft = 0;
int currMinLeft;
// First selection phase (see Knuth)
for( int i = size; --i != 0; ) {
currMinLeft = minLeft = minRight = -1;
currPri = Long.MAX_VALUE;
while( removed[ first ] ) first++;
while( removed[ last ] ) last--;
right = first;
assert right < last;
while( right < last ) {
left = currMinLeft = right;
do {
right++;
if ( ! removed[ right ] ) {
if ( compoundFrequency[ currMinLeft ] + compoundFrequency[ right ] < currPri ) {
currPri = compoundFrequency[ currMinLeft ] + compoundFrequency[ right ];
minLeft = currMinLeft;
minRight = right;
}
if ( compoundFrequency[ right ] < compoundFrequency[ currMinLeft ] ) currMinLeft = right;
}
} while( ( removed[ right ] || internal[ right ] ) && right < last );
assert right == last || ( ! removed[ right ] && ! internal[ right ] );
assert left < right;
}
internal[ minLeft ] = true;
removed[ minRight ] = true;
n = new LevelNode();
n.left = node[ minLeft ];
n.right = node[ minRight ];
node[ minLeft ] = n;
compoundFrequency[ minLeft ] += compoundFrequency[ minRight ];
}
// Recursive marking
markRec( node[ minLeft ], 0 );
// We now restart the aggregation process
BooleanArrays.fill( removed, false );
System.arraycopy( externalNode, 0, node, 0, size );
int currLevel, leftLevel;
first = 0;
minLeft = 0;
last = size - 1;
for( int i = size; --i != 0; ) {
while( removed[ first ] ) first++;
while( removed[ last ] ) last--;
left = first;
currLevel = minLeft = minRight = -1;
while( left < last ) {
leftLevel = node[ left ].level;
assert leftLevel > currLevel;
for( right = left + 1; right <= last && removed[ right ]; right++ );
assert right <= last;
assert ! removed[ right ];
if ( leftLevel == node[ right ].level ) {
currLevel = leftLevel;
minLeft = left;
minRight = right;
}
do left++; while( left < last && ( removed[ left ] || node[ left ].level <= currLevel ) );
}
removed[ minRight ] = true;
n = new LevelNode();
n.left = node[ minLeft ];
n.right = node[ minRight ];
n.level = currLevel - 1;
node[ minLeft ] = n;
}
root = rebuildTree( node[ minLeft ] );
decoder = new TreeDecoder( root, size );
coder = new CodeWordCoder( decoder.buildCodes() );
if ( DEBUG ) {
final BitVector[] codeWord = coder.codeWords();
System.err.println( "Codes: " );
for( int i = 0; i < size; i++ )
System.err.println( i + " (" + codeWord[ i ].size() + " bits): " + codeWord[ i ] );
long totFreq = 0;
for( int i = size; i-- != 0; ) totFreq += frequency[ i ];
long totBits = 0;
for( int i = size; i-- != 0; ) totBits += frequency[ i ] * codeWord[ i ].size();
System.err.println( "Compression: " + totBits + " / " + totFreq * Character.SIZE + " = " + (double)totBits/(totFreq * Character.SIZE) );
}
}
/** We scan recursively the tree, making a copy that uses lightweight nodes. */
private TreeDecoder.Node rebuildTree( final LevelNode n ) {
if ( n == null ) return null;
if ( n.symbol != -1 ) return new TreeDecoder.LeafNode( n.symbol );
TreeDecoder.Node newNode = new TreeDecoder.Node();
newNode.left = rebuildTree( (LevelNode) n.left );
newNode.right = rebuildTree( (LevelNode) n.right );
return newNode;
}
/** Mark recursively the height of each node. */
private void markRec( final LevelNode n, final int height ) {
if ( n == null ) return;
n.level = height;
markRec( (LevelNode) n.left, height + 1 );
markRec( (LevelNode) n.right, height + 1 );
}
public CodeWordCoder coder() {
return coder;
}
public Decoder decoder() {
return decoder;
}
public int size() {
return size;
}
public BitVector[] codeWords() {
return coder.codeWords();
}
@Deprecated
public PrefixCoder getCoder() { return coder(); }
@Deprecated
public Decoder getDecoder() { return decoder(); }
}