All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.compression.HuTuckerCodec Maven / Gradle / Ivy

Go to download

Blazegraph Modifications to the DSI utils. This are forked from version 1.10.0 under LGPLv2.1.

There is a newer version: 2.1.4
Show newest version
package it.unimi.dsi.compression;

/*		 
 * DSI utilities
 *
 * Copyright (C) 2005-2009 Sebastiano Vigna 
 *
 *  This library is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU Lesser General Public License as published by the Free
 *  Software Foundation; either version 2.1 of the License, or (at your option)
 *  any later version.
 *
 *  This library is distributed in the hope that it will be useful, but
 *  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 *  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 */

import it.unimi.dsi.bits.BitVector;
import it.unimi.dsi.fastutil.booleans.BooleanArrays;

import java.io.Serializable;

/** An implementation of the Hu–Tucker optimal lexicographical prefix-free code.
 * 
 * 

The familiar Huffman coding technique can be extended so to preserve the order in which * symbols are given to the coder, in the sense that if j<k, then the * j-th symbol will get a code lexicographically smaller than the one * assigned to the k-th symbol. This result can be obtained with a small loss in * code length (for more details, see the third volume of The Art of Computer Programming). * *

A Hu–Tucker coder is built given an array of frequencies corresponding to each * symbol. Frequency 0 symbols are allowed, but they will degrade the resulting code. * *

The implementation of this class is rather inefficient, and the time required to build * a Hu–Tucker code is quadratic in the number of symbols. * An O(n log n) implementation * is possible, but it requires very sophisticated data structures. */ public class HuTuckerCodec implements PrefixCodec, Serializable { private static final boolean DEBUG = false; private static final long serialVersionUID = 2L; /** The number of symbols of this coder. */ public final int size; /** The root of the decoding tree. */ private final TreeDecoder.Node root; /** A cached singleton instance of the coder of this codec. */ private final CodeWordCoder coder; /** A cached singleton instance of the decoder of this codec. */ private final TreeDecoder decoder; /** A node to be used for the tree construction: it records both the level and the index. */ private static final class LevelNode extends TreeDecoder.LeafNode { private static final long serialVersionUID = 1L; int level; private LevelNode( final int symbol ) { super( symbol ); } private LevelNode() { super( -1 ); } } private static long[] intArray2LongArray( final int a[] ) { final long[] b = new long[ a.length ]; for( int i = a.length; i-- != 0; ) b[ i ] = a[ i ]; return b; } public HuTuckerCodec( final int[] frequency ) { this( intArray2LongArray( frequency ) ); } public HuTuckerCodec( final long[] frequency ) { size = frequency.length; final boolean[] internal = new boolean[ size ]; final boolean[] removed = new boolean[ size ]; final long[] compoundFrequency = new long[ size ]; final LevelNode[] externalNode = new LevelNode[ size ], node = new LevelNode[ size ]; long currPri; int first, last, left, right, minLeft, minRight; LevelNode n; // We create a node with level information for each symbol for( int i = size; i-- != 0; ) { compoundFrequency[ i ] = frequency[ i ]; node[ i ] = externalNode[ i ] = new LevelNode( i ); } first = 0; last = size - 1; minLeft = 0; int currMinLeft; // First selection phase (see Knuth) for( int i = size; --i != 0; ) { currMinLeft = minLeft = minRight = -1; currPri = Long.MAX_VALUE; while( removed[ first ] ) first++; while( removed[ last ] ) last--; right = first; assert right < last; while( right < last ) { left = currMinLeft = right; do { right++; if ( ! removed[ right ] ) { if ( compoundFrequency[ currMinLeft ] + compoundFrequency[ right ] < currPri ) { currPri = compoundFrequency[ currMinLeft ] + compoundFrequency[ right ]; minLeft = currMinLeft; minRight = right; } if ( compoundFrequency[ right ] < compoundFrequency[ currMinLeft ] ) currMinLeft = right; } } while( ( removed[ right ] || internal[ right ] ) && right < last ); assert right == last || ( ! removed[ right ] && ! internal[ right ] ); assert left < right; } internal[ minLeft ] = true; removed[ minRight ] = true; n = new LevelNode(); n.left = node[ minLeft ]; n.right = node[ minRight ]; node[ minLeft ] = n; compoundFrequency[ minLeft ] += compoundFrequency[ minRight ]; } // Recursive marking markRec( node[ minLeft ], 0 ); // We now restart the aggregation process BooleanArrays.fill( removed, false ); System.arraycopy( externalNode, 0, node, 0, size ); int currLevel, leftLevel; first = 0; minLeft = 0; last = size - 1; for( int i = size; --i != 0; ) { while( removed[ first ] ) first++; while( removed[ last ] ) last--; left = first; currLevel = minLeft = minRight = -1; while( left < last ) { leftLevel = node[ left ].level; assert leftLevel > currLevel; for( right = left + 1; right <= last && removed[ right ]; right++ ); assert right <= last; assert ! removed[ right ]; if ( leftLevel == node[ right ].level ) { currLevel = leftLevel; minLeft = left; minRight = right; } do left++; while( left < last && ( removed[ left ] || node[ left ].level <= currLevel ) ); } removed[ minRight ] = true; n = new LevelNode(); n.left = node[ minLeft ]; n.right = node[ minRight ]; n.level = currLevel - 1; node[ minLeft ] = n; } root = rebuildTree( node[ minLeft ] ); decoder = new TreeDecoder( root, size ); coder = new CodeWordCoder( decoder.buildCodes() ); if ( DEBUG ) { final BitVector[] codeWord = coder.codeWords(); System.err.println( "Codes: " ); for( int i = 0; i < size; i++ ) System.err.println( i + " (" + codeWord[ i ].size() + " bits): " + codeWord[ i ] ); long totFreq = 0; for( int i = size; i-- != 0; ) totFreq += frequency[ i ]; long totBits = 0; for( int i = size; i-- != 0; ) totBits += frequency[ i ] * codeWord[ i ].size(); System.err.println( "Compression: " + totBits + " / " + totFreq * Character.SIZE + " = " + (double)totBits/(totFreq * Character.SIZE) ); } } /** We scan recursively the tree, making a copy that uses lightweight nodes. */ private TreeDecoder.Node rebuildTree( final LevelNode n ) { if ( n == null ) return null; if ( n.symbol != -1 ) return new TreeDecoder.LeafNode( n.symbol ); TreeDecoder.Node newNode = new TreeDecoder.Node(); newNode.left = rebuildTree( (LevelNode) n.left ); newNode.right = rebuildTree( (LevelNode) n.right ); return newNode; } /** Mark recursively the height of each node. */ private void markRec( final LevelNode n, final int height ) { if ( n == null ) return; n.level = height; markRec( (LevelNode) n.left, height + 1 ); markRec( (LevelNode) n.right, height + 1 ); } public CodeWordCoder coder() { return coder; } public Decoder decoder() { return decoder; } public int size() { return size; } public BitVector[] codeWords() { return coder.codeWords(); } @Deprecated public PrefixCoder getCoder() { return coder(); } @Deprecated public Decoder getDecoder() { return decoder(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy