All Downloads are FREE. Search and download functionalities are using the official Maven repository.

templates.deployment.airflow.airflow.machine.learning.dag.vm Maven / Gradle / Ivy

The newest version!
from datetime import timedelta
from textwrap import dedent

# The DAG object; we'll need this to instantiate a DAG
from airflow import DAG

# Operators; we need this to operate!
from airflow.operators.bash import BashOperator
from airflow.utils.dates import days_ago
# These args will get passed on to each operator
# You can override them on a per-task basis during operator initialization
default_args = {
    'owner': 'airflow',
    'depends_on_past': False,
    'email': ['[email protected]'],
    'email_on_failure': False,
    'email_on_retry': False,
    'retries': 1,
    'retry_delay': timedelta(minutes=5)
}
with DAG(
    '${pipelineStep.getName()}',
    default_args=default_args,
    description='A simple skeleton DAG for your machine learning training step ${pipelineStep.getName()}',
    schedule_interval=None,
    start_date=days_ago(2),
    tags=['pipeline'],
) as dag:
    ${pipelineStep.getLowercaseSnakeCaseName()} = BashOperator(
        task_id='${pipelineStep.getLowercaseSnakeCaseName()}_driver',
        bash_command='source /opt/airflow/pipelines-env/bin/activate && \
        python -m ${pipelineStep.getLowercaseSnakeCaseName()}.${pythonPipeline.getSnakeCaseName()}_driver',
    )




© 2015 - 2025 Weber Informatics LLC | Privacy Policy