java.util.concurrent.ConcurrentHashMap Maven / Gradle / Ivy
/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package java.util.concurrent;
import java.util.concurrent.locks.*;
import java.util.*;
import java.io.Serializable;
// BEGIN android-note
// removed link to collections framework docs
// END android-note
/**
* A hash table supporting full concurrency of retrievals and
* adjustable expected concurrency for updates. This class obeys the
* same functional specification as {@link java.util.Hashtable}, and
* includes versions of methods corresponding to each method of
* Hashtable. However, even though all operations are
* thread-safe, retrieval operations do not entail locking,
* and there is not any support for locking the entire table
* in a way that prevents all access. This class is fully
* interoperable with Hashtable in programs that rely on its
* thread safety but not on its synchronization details.
*
* Retrieval operations (including get) generally do not
* block, so may overlap with update operations (including
* put and remove). Retrievals reflect the results
* of the most recently completed update operations holding
* upon their onset. For aggregate operations such as putAll
* and clear, concurrent retrievals may reflect insertion or
* removal of only some entries. Similarly, Iterators and
* Enumerations return elements reflecting the state of the hash table
* at some point at or since the creation of the iterator/enumeration.
* They do not throw {@link ConcurrentModificationException}.
* However, iterators are designed to be used by only one thread at a time.
*
*
The allowed concurrency among update operations is guided by
* the optional concurrencyLevel constructor argument
* (default 16), which is used as a hint for internal sizing. The
* table is internally partitioned to try to permit the indicated
* number of concurrent updates without contention. Because placement
* in hash tables is essentially random, the actual concurrency will
* vary. Ideally, you should choose a value to accommodate as many
* threads as will ever concurrently modify the table. Using a
* significantly higher value than you need can waste space and time,
* and a significantly lower value can lead to thread contention. But
* overestimates and underestimates within an order of magnitude do
* not usually have much noticeable impact. A value of one is
* appropriate when it is known that only one thread will modify and
* all others will only read. Also, resizing this or any other kind of
* hash table is a relatively slow operation, so, when possible, it is
* a good idea to provide estimates of expected table sizes in
* constructors.
*
*
This class and its views and iterators implement all of the
* optional methods of the {@link Map} and {@link Iterator}
* interfaces.
*
*
Like {@link Hashtable} but unlike {@link HashMap}, this class
* does not allow null to be used as a key or value.
*
* @since 1.5
* @author Doug Lea
* @param the type of keys maintained by this map
* @param the type of mapped values
*/
public class ConcurrentHashMap extends AbstractMap
implements ConcurrentMap, Serializable {
private static final long serialVersionUID = 7249069246763182397L;
/*
* The basic strategy is to subdivide the table among Segments,
* each of which itself is a concurrently readable hash table. To
* reduce footprint, all but one segments are constructed only
* when first needed (see ensureSegment). To maintain visibility
* in the presence of lazy construction, accesses to segments as
* well as elements of segment's table must use volatile access,
* which is done via Unsafe within methods segmentAt etc
* below. These provide the functionality of AtomicReferenceArrays
* but reduce the levels of indirection. Additionally,
* volatile-writes of table elements and entry "next" fields
* within locked operations use the cheaper "lazySet" forms of
* writes (via putOrderedObject) because these writes are always
* followed by lock releases that maintain sequential consistency
* of table updates.
*
* Historical note: The previous version of this class relied
* heavily on "final" fields, which avoided some volatile reads at
* the expense of a large initial footprint. Some remnants of
* that design (including forced construction of segment 0) exist
* to ensure serialization compatibility.
*/
/* ---------------- Constants -------------- */
/**
* The default initial capacity for this table,
* used when not otherwise specified in a constructor.
*/
static final int DEFAULT_INITIAL_CAPACITY = 16;
/**
* The default load factor for this table, used when not
* otherwise specified in a constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* The default concurrency level for this table, used when not
* otherwise specified in a constructor.
*/
static final int DEFAULT_CONCURRENCY_LEVEL = 16;
/**
* The maximum capacity, used if a higher value is implicitly
* specified by either of the constructors with arguments. MUST
* be a power of two <= 1<<30 to ensure that entries are indexable
* using ints.
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* The minimum capacity for per-segment tables. Must be a power
* of two, at least two to avoid immediate resizing on next use
* after lazy construction.
*/
static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
/**
* The maximum number of segments to allow; used to bound
* constructor arguments. Must be power of two less than 1 << 24.
*/
static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
/**
* Number of unsynchronized retries in size and containsValue
* methods before resorting to locking. This is used to avoid
* unbounded retries if tables undergo continuous modification
* which would make it impossible to obtain an accurate result.
*/
static final int RETRIES_BEFORE_LOCK = 2;
/* ---------------- Fields -------------- */
/**
* Mask value for indexing into segments. The upper bits of a
* key's hash code are used to choose the segment.
*/
final int segmentMask;
/**
* Shift value for indexing within segments.
*/
final int segmentShift;
/**
* The segments, each of which is a specialized hash table.
*/
final Segment[] segments;
transient Set keySet;
transient Set> entrySet;
transient Collection values;
/**
* ConcurrentHashMap list entry. Note that this is never exported
* out as a user-visible Map.Entry.
*/
static final class HashEntry {
final int hash;
final K key;
volatile V value;
volatile HashEntry next;
HashEntry(int hash, K key, V value, HashEntry next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
/**
* Sets next field with volatile write semantics. (See above
* about use of putOrderedObject.)
*/
final void setNext(HashEntry n) {
UNSAFE.putOrderedObject(this, nextOffset, n);
}
// Unsafe mechanics
static final sun.misc.Unsafe UNSAFE;
static final long nextOffset;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class> k = HashEntry.class;
nextOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("next"));
} catch (Exception e) {
throw new Error(e);
}
}
}
/**
* Gets the ith element of given table (if nonnull) with volatile
* read semantics. Note: This is manually integrated into a few
* performance-sensitive methods to reduce call overhead.
*/
@SuppressWarnings("unchecked")
static final HashEntry entryAt(HashEntry[] tab, int i) {
return (tab == null) ? null :
(HashEntry) UNSAFE.getObjectVolatile
(tab, ((long)i << TSHIFT) + TBASE);
}
/**
* Sets the ith element of given table, with volatile write
* semantics. (See above about use of putOrderedObject.)
*/
static final void setEntryAt(HashEntry[] tab, int i,
HashEntry e) {
UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
}
/**
* Applies a supplemental hash function to a given hashCode, which
* defends against poor quality hash functions. This is critical
* because ConcurrentHashMap uses power-of-two length hash tables,
* that otherwise encounter collisions for hashCodes that do not
* differ in lower or upper bits.
*/
private static int hash(int h) {
// Spread bits to regularize both segment and index locations,
// using variant of single-word Wang/Jenkins hash.
h += (h << 15) ^ 0xffffcd7d;
h ^= (h >>> 10);
h += (h << 3);
h ^= (h >>> 6);
h += (h << 2) + (h << 14);
return h ^ (h >>> 16);
}
/**
* Segments are specialized versions of hash tables. This
* subclasses from ReentrantLock opportunistically, just to
* simplify some locking and avoid separate construction.
*/
static final class Segment extends ReentrantLock implements Serializable {
/*
* Segments maintain a table of entry lists that are always
* kept in a consistent state, so can be read (via volatile
* reads of segments and tables) without locking. This
* requires replicating nodes when necessary during table
* resizing, so the old lists can be traversed by readers
* still using old version of table.
*
* This class defines only mutative methods requiring locking.
* Except as noted, the methods of this class perform the
* per-segment versions of ConcurrentHashMap methods. (Other
* methods are integrated directly into ConcurrentHashMap
* methods.) These mutative methods use a form of controlled
* spinning on contention via methods scanAndLock and
* scanAndLockForPut. These intersperse tryLocks with
* traversals to locate nodes. The main benefit is to absorb
* cache misses (which are very common for hash tables) while
* obtaining locks so that traversal is faster once
* acquired. We do not actually use the found nodes since they
* must be re-acquired under lock anyway to ensure sequential
* consistency of updates (and in any case may be undetectably
* stale), but they will normally be much faster to re-locate.
* Also, scanAndLockForPut speculatively creates a fresh node
* to use in put if no node is found.
*/
private static final long serialVersionUID = 2249069246763182397L;
/**
* The maximum number of times to tryLock in a prescan before
* possibly blocking on acquire in preparation for a locked
* segment operation. On multiprocessors, using a bounded
* number of retries maintains cache acquired while locating
* nodes.
*/
static final int MAX_SCAN_RETRIES =
Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
/**
* The per-segment table. Elements are accessed via
* entryAt/setEntryAt providing volatile semantics.
*/
transient volatile HashEntry[] table;
/**
* The number of elements. Accessed only either within locks
* or among other volatile reads that maintain visibility.
*/
transient int count;
/**
* The total number of mutative operations in this segment.
* Even though this may overflows 32 bits, it provides
* sufficient accuracy for stability checks in CHM isEmpty()
* and size() methods. Accessed only either within locks or
* among other volatile reads that maintain visibility.
*/
transient int modCount;
/**
* The table is rehashed when its size exceeds this threshold.
* (The value of this field is always (int)(capacity *
* loadFactor).)
*/
transient int threshold;
/**
* The load factor for the hash table. Even though this value
* is same for all segments, it is replicated to avoid needing
* links to outer object.
* @serial
*/
final float loadFactor;
Segment(float lf, int threshold, HashEntry[] tab) {
this.loadFactor = lf;
this.threshold = threshold;
this.table = tab;
}
final V put(K key, int hash, V value, boolean onlyIfAbsent) {
HashEntry node = tryLock() ? null :
scanAndLockForPut(key, hash, value);
V oldValue;
try {
HashEntry[] tab = table;
int index = (tab.length - 1) & hash;
HashEntry first = entryAt(tab, index);
for (HashEntry e = first;;) {
if (e != null) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
if (!onlyIfAbsent) {
e.value = value;
++modCount;
}
break;
}
e = e.next;
}
else {
if (node != null)
node.setNext(first);
else
node = new HashEntry(hash, key, value, first);
int c = count + 1;
if (c > threshold && tab.length < MAXIMUM_CAPACITY)
rehash(node);
else
setEntryAt(tab, index, node);
++modCount;
count = c;
oldValue = null;
break;
}
}
} finally {
unlock();
}
return oldValue;
}
/**
* Doubles size of table and repacks entries, also adding the
* given node to new table
*/
@SuppressWarnings("unchecked")
private void rehash(HashEntry node) {
/*
* Reclassify nodes in each list to new table. Because we
* are using power-of-two expansion, the elements from
* each bin must either stay at same index, or move with a
* power of two offset. We eliminate unnecessary node
* creation by catching cases where old nodes can be
* reused because their next fields won't change.
* Statistically, at the default threshold, only about
* one-sixth of them need cloning when a table
* doubles. The nodes they replace will be garbage
* collectable as soon as they are no longer referenced by
* any reader thread that may be in the midst of
* concurrently traversing table. Entry accesses use plain
* array indexing because they are followed by volatile
* table write.
*/
HashEntry[] oldTable = table;
int oldCapacity = oldTable.length;
int newCapacity = oldCapacity << 1;
threshold = (int)(newCapacity * loadFactor);
HashEntry[] newTable =
(HashEntry[]) new HashEntry,?>[newCapacity];
int sizeMask = newCapacity - 1;
for (int i = 0; i < oldCapacity ; i++) {
HashEntry e = oldTable[i];
if (e != null) {
HashEntry next = e.next;
int idx = e.hash & sizeMask;
if (next == null) // Single node on list
newTable[idx] = e;
else { // Reuse consecutive sequence at same slot
HashEntry lastRun = e;
int lastIdx = idx;
for (HashEntry last = next;
last != null;
last = last.next) {
int k = last.hash & sizeMask;
if (k != lastIdx) {
lastIdx = k;
lastRun = last;
}
}
newTable[lastIdx] = lastRun;
// Clone remaining nodes
for (HashEntry p = e; p != lastRun; p = p.next) {
V v = p.value;
int h = p.hash;
int k = h & sizeMask;
HashEntry n = newTable[k];
newTable[k] = new HashEntry(h, p.key, v, n);
}
}
}
}
int nodeIndex = node.hash & sizeMask; // add the new node
node.setNext(newTable[nodeIndex]);
newTable[nodeIndex] = node;
table = newTable;
}
/**
* Scans for a node containing given key while trying to
* acquire lock, creating and returning one if not found. Upon
* return, guarantees that lock is held. Unlike in most
* methods, calls to method equals are not screened: Since
* traversal speed doesn't matter, we might as well help warm
* up the associated code and accesses as well.
*
* @return a new node if key not found, else null
*/
private HashEntry scanAndLockForPut(K key, int hash, V value) {
HashEntry first = entryForHash(this, hash);
HashEntry e = first;
HashEntry node = null;
int retries = -1; // negative while locating node
while (!tryLock()) {
HashEntry f; // to recheck first below
if (retries < 0) {
if (e == null) {
if (node == null) // speculatively create node
node = new HashEntry(hash, key, value, null);
retries = 0;
}
else if (key.equals(e.key))
retries = 0;
else
e = e.next;
}
else if (++retries > MAX_SCAN_RETRIES) {
lock();
break;
}
else if ((retries & 1) == 0 &&
(f = entryForHash(this, hash)) != first) {
e = first = f; // re-traverse if entry changed
retries = -1;
}
}
return node;
}
/**
* Scans for a node containing the given key while trying to
* acquire lock for a remove or replace operation. Upon
* return, guarantees that lock is held. Note that we must
* lock even if the key is not found, to ensure sequential
* consistency of updates.
*/
private void scanAndLock(Object key, int hash) {
// similar to but simpler than scanAndLockForPut
HashEntry first = entryForHash(this, hash);
HashEntry e = first;
int retries = -1;
while (!tryLock()) {
HashEntry f;
if (retries < 0) {
if (e == null || key.equals(e.key))
retries = 0;
else
e = e.next;
}
else if (++retries > MAX_SCAN_RETRIES) {
lock();
break;
}
else if ((retries & 1) == 0 &&
(f = entryForHash(this, hash)) != first) {
e = first = f;
retries = -1;
}
}
}
/**
* Remove; match on key only if value null, else match both.
*/
final V remove(Object key, int hash, Object value) {
if (!tryLock())
scanAndLock(key, hash);
V oldValue = null;
try {
HashEntry[] tab = table;
int index = (tab.length - 1) & hash;
HashEntry e = entryAt(tab, index);
HashEntry pred = null;
while (e != null) {
K k;
HashEntry next = e.next;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
V v = e.value;
if (value == null || value == v || value.equals(v)) {
if (pred == null)
setEntryAt(tab, index, next);
else
pred.setNext(next);
++modCount;
--count;
oldValue = v;
}
break;
}
pred = e;
e = next;
}
} finally {
unlock();
}
return oldValue;
}
final boolean replace(K key, int hash, V oldValue, V newValue) {
if (!tryLock())
scanAndLock(key, hash);
boolean replaced = false;
try {
HashEntry e;
for (e = entryForHash(this, hash); e != null; e = e.next) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
if (oldValue.equals(e.value)) {
e.value = newValue;
++modCount;
replaced = true;
}
break;
}
}
} finally {
unlock();
}
return replaced;
}
final V replace(K key, int hash, V value) {
if (!tryLock())
scanAndLock(key, hash);
V oldValue = null;
try {
HashEntry e;
for (e = entryForHash(this, hash); e != null; e = e.next) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
e.value = value;
++modCount;
break;
}
}
} finally {
unlock();
}
return oldValue;
}
final void clear() {
lock();
try {
HashEntry[] tab = table;
for (int i = 0; i < tab.length ; i++)
setEntryAt(tab, i, null);
++modCount;
count = 0;
} finally {
unlock();
}
}
}
// Accessing segments
/**
* Gets the jth element of given segment array (if nonnull) with
* volatile element access semantics via Unsafe. (The null check
* can trigger harmlessly only during deserialization.) Note:
* because each element of segments array is set only once (using
* fully ordered writes), some performance-sensitive methods rely
* on this method only as a recheck upon null reads.
*/
@SuppressWarnings("unchecked")
static final Segment segmentAt(Segment[] ss, int j) {
long u = (j << SSHIFT) + SBASE;
return ss == null ? null :
(Segment) UNSAFE.getObjectVolatile(ss, u);
}
/**
* Returns the segment for the given index, creating it and
* recording in segment table (via CAS) if not already present.
*
* @param k the index
* @return the segment
*/
@SuppressWarnings("unchecked")
private Segment ensureSegment(int k) {
final Segment[] ss = this.segments;
long u = (k << SSHIFT) + SBASE; // raw offset
Segment seg;
if ((seg = (Segment)UNSAFE.getObjectVolatile(ss, u)) == null) {
Segment proto = ss[0]; // use segment 0 as prototype
int cap = proto.table.length;
float lf = proto.loadFactor;
int threshold = (int)(cap * lf);
HashEntry[] tab = (HashEntry[])new HashEntry,?>[cap];
if ((seg = (Segment)UNSAFE.getObjectVolatile(ss, u))
== null) { // recheck
Segment s = new Segment(lf, threshold, tab);
while ((seg = (Segment)UNSAFE.getObjectVolatile(ss, u))
== null) {
if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
break;
}
}
}
return seg;
}
// Hash-based segment and entry accesses
/**
* Gets the segment for the given hash code.
*/
@SuppressWarnings("unchecked")
private Segment segmentForHash(int h) {
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
return (Segment) UNSAFE.getObjectVolatile(segments, u);
}
/**
* Gets the table entry for the given segment and hash code.
*/
@SuppressWarnings("unchecked")
static final HashEntry entryForHash(Segment seg, int h) {
HashEntry[] tab;
return (seg == null || (tab = seg.table) == null) ? null :
(HashEntry) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
}
/* ---------------- Public operations -------------- */
/**
* Creates a new, empty map with the specified initial
* capacity, load factor and concurrency level.
*
* @param initialCapacity the initial capacity. The implementation
* performs internal sizing to accommodate this many elements.
* @param loadFactor the load factor threshold, used to control resizing.
* Resizing may be performed when the average number of elements per
* bin exceeds this threshold.
* @param concurrencyLevel the estimated number of concurrently
* updating threads. The implementation performs internal sizing
* to try to accommodate this many threads.
* @throws IllegalArgumentException if the initial capacity is
* negative or the load factor or concurrencyLevel are
* nonpositive.
*/
@SuppressWarnings("unchecked")
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (concurrencyLevel > MAX_SEGMENTS)
concurrencyLevel = MAX_SEGMENTS;
// Find power-of-two sizes best matching arguments
int sshift = 0;
int ssize = 1;
while (ssize < concurrencyLevel) {
++sshift;
ssize <<= 1;
}
this.segmentShift = 32 - sshift;
this.segmentMask = ssize - 1;
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
int c = initialCapacity / ssize;
if (c * ssize < initialCapacity)
++c;
int cap = MIN_SEGMENT_TABLE_CAPACITY;
while (cap < c)
cap <<= 1;
// create segments and segments[0]
Segment s0 =
new Segment(loadFactor, (int)(cap * loadFactor),
(HashEntry[])new HashEntry,?>[cap]);
Segment[] ss = (Segment[])new Segment,?>[ssize];
UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
this.segments = ss;
}
/**
* Creates a new, empty map with the specified initial capacity
* and load factor and with the default concurrencyLevel (16).
*
* @param initialCapacity The implementation performs internal
* sizing to accommodate this many elements.
* @param loadFactor the load factor threshold, used to control resizing.
* Resizing may be performed when the average number of elements per
* bin exceeds this threshold.
* @throws IllegalArgumentException if the initial capacity of
* elements is negative or the load factor is nonpositive
*
* @since 1.6
*/
public ConcurrentHashMap(int initialCapacity, float loadFactor) {
this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
}
/**
* Creates a new, empty map with the specified initial capacity,
* and with default load factor (0.75) and concurrencyLevel (16).
*
* @param initialCapacity the initial capacity. The implementation
* performs internal sizing to accommodate this many elements.
* @throws IllegalArgumentException if the initial capacity of
* elements is negative.
*/
public ConcurrentHashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
}
/**
* Creates a new, empty map with a default initial capacity (16),
* load factor (0.75) and concurrencyLevel (16).
*/
public ConcurrentHashMap() {
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
}
/**
* Creates a new map with the same mappings as the given map.
* The map is created with a capacity of 1.5 times the number
* of mappings in the given map or 16 (whichever is greater),
* and a default load factor (0.75) and concurrencyLevel (16).
*
* @param m the map
*/
public ConcurrentHashMap(Map extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY),
DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
putAll(m);
}
/**
* Returns true if this map contains no key-value mappings.
*
* @return true if this map contains no key-value mappings
*/
public boolean isEmpty() {
/*
* Sum per-segment modCounts to avoid mis-reporting when
* elements are concurrently added and removed in one segment
* while checking another, in which case the table was never
* actually empty at any point. (The sum ensures accuracy up
* through at least 1<<31 per-segment modifications before
* recheck.) Methods size() and containsValue() use similar
* constructions for stability checks.
*/
long sum = 0L;
final Segment[] segments = this.segments;
for (int j = 0; j < segments.length; ++j) {
Segment seg = segmentAt(segments, j);
if (seg != null) {
if (seg.count != 0)
return false;
sum += seg.modCount;
}
}
if (sum != 0L) { // recheck unless no modifications
for (int j = 0; j < segments.length; ++j) {
Segment seg = segmentAt(segments, j);
if (seg != null) {
if (seg.count != 0)
return false;
sum -= seg.modCount;
}
}
if (sum != 0L)
return false;
}
return true;
}
/**
* Returns the number of key-value mappings in this map. If the
* map contains more than Integer.MAX_VALUE elements, returns
* Integer.MAX_VALUE.
*
* @return the number of key-value mappings in this map
*/
public int size() {
// Try a few times to get accurate count. On failure due to
// continuous async changes in table, resort to locking.
final Segment[] segments = this.segments;
final int segmentCount = segments.length;
long previousSum = 0L;
for (int retries = -1; retries < RETRIES_BEFORE_LOCK; retries++) {
long sum = 0L; // sum of modCounts
long size = 0L;
for (int i = 0; i < segmentCount; i++) {
Segment segment = segmentAt(segments, i);
if (segment != null) {
sum += segment.modCount;
size += segment.count;
}
}
if (sum == previousSum)
return ((size >>> 31) == 0) ? (int) size : Integer.MAX_VALUE;
previousSum = sum;
}
long size = 0L;
for (int i = 0; i < segmentCount; i++) {
Segment segment = ensureSegment(i);
segment.lock();
size += segment.count;
}
for (int i = 0; i < segmentCount; i++)
segments[i].unlock();
return ((size >>> 31) == 0) ? (int) size : Integer.MAX_VALUE;
}
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code key.equals(k)},
* then this method returns {@code v}; otherwise it returns
* {@code null}. (There can be at most one such mapping.)
*
* @throws NullPointerException if the specified key is null
*/
public V get(Object key) {
Segment s; // manually integrate access methods to reduce overhead
HashEntry[] tab;
int h = hash(key.hashCode());
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
if ((s = (Segment)UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {
for (HashEntry e = (HashEntry) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return e.value;
}
}
return null;
}
/**
* Tests if the specified object is a key in this table.
*
* @param key possible key
* @return true if and only if the specified object
* is a key in this table, as determined by the
* equals method; false otherwise.
* @throws NullPointerException if the specified key is null
*/
@SuppressWarnings("unchecked")
public boolean containsKey(Object key) {
Segment s; // same as get() except no need for volatile value read
HashEntry[] tab;
int h = hash(key.hashCode());
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
if ((s = (Segment)UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {
for (HashEntry e = (HashEntry) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return true;
}
}
return false;
}
/**
* Returns true if this map maps one or more keys to the
* specified value. Note: This method requires a full internal
* traversal of the hash table, and so is much slower than
* method containsKey.
*
* @param value value whose presence in this map is to be tested
* @return true if this map maps one or more keys to the
* specified value
* @throws NullPointerException if the specified value is null
*/
public boolean containsValue(Object value) {
// Same idea as size()
if (value == null)
throw new NullPointerException();
final Segment[] segments = this.segments;
long previousSum = 0L;
int lockCount = 0;
try {
for (int retries = -1; ; retries++) {
long sum = 0L; // sum of modCounts
for (int j = 0; j < segments.length; j++) {
Segment segment;
if (retries == RETRIES_BEFORE_LOCK) {
segment = ensureSegment(j);
segment.lock();
lockCount++;
} else {
segment = segmentAt(segments, j);
if (segment == null)
continue;
}
HashEntry[] tab = segment.table;
if (tab != null) {
for (int i = 0 ; i < tab.length; i++) {
HashEntry e;
for (e = entryAt(tab, i); e != null; e = e.next) {
V v = e.value;
if (v != null && value.equals(v))
return true;
}
}
sum += segment.modCount;
}
}
if ((retries >= 0 && sum == previousSum) || lockCount > 0)
return false;
previousSum = sum;
}
} finally {
for (int j = 0; j < lockCount; j++)
segments[j].unlock();
}
}
/**
* Legacy method testing if some key maps into the specified value
* in this table. This method is identical in functionality to
* {@link #containsValue}, and exists solely to ensure
* full compatibility with class {@link java.util.Hashtable},
* which supported this method prior to introduction of the
* Java Collections framework.
*
* @param value a value to search for
* @return true if and only if some key maps to the
* value argument in this table as
* determined by the equals method;
* false otherwise
* @throws NullPointerException if the specified value is null
*/
public boolean contains(Object value) {
return containsValue(value);
}
/**
* Maps the specified key to the specified value in this table.
* Neither the key nor the value can be null.
*
* The value can be retrieved by calling the get method
* with a key that is equal to the original key.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with key, or
* null if there was no mapping for key
* @throws NullPointerException if the specified key or value is null
*/
@SuppressWarnings("unchecked")
public V put(K key, V value) {
Segment s;
if (value == null)
throw new NullPointerException();
int hash = hash(key.hashCode());
int j = (hash >>> segmentShift) & segmentMask;
if ((s = (Segment)UNSAFE.getObject // nonvolatile; recheck
(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
s = ensureSegment(j);
return s.put(key, hash, value, false);
}
/**
* {@inheritDoc}
*
* @return the previous value associated with the specified key,
* or null if there was no mapping for the key
* @throws NullPointerException if the specified key or value is null
*/
@SuppressWarnings("unchecked")
public V putIfAbsent(K key, V value) {
Segment s;
if (value == null)
throw new NullPointerException();
int hash = hash(key.hashCode());
int j = (hash >>> segmentShift) & segmentMask;
if ((s = (Segment)UNSAFE.getObject
(segments, (j << SSHIFT) + SBASE)) == null)
s = ensureSegment(j);
return s.put(key, hash, value, true);
}
/**
* Copies all of the mappings from the specified map to this one.
* These mappings replace any mappings that this map had for any of the
* keys currently in the specified map.
*
* @param m mappings to be stored in this map
*/
public void putAll(Map extends K, ? extends V> m) {
for (Map.Entry extends K, ? extends V> e : m.entrySet())
put(e.getKey(), e.getValue());
}
/**
* Removes the key (and its corresponding value) from this map.
* This method does nothing if the key is not in the map.
*
* @param key the key that needs to be removed
* @return the previous value associated with key, or
* null if there was no mapping for key
* @throws NullPointerException if the specified key is null
*/
public V remove(Object key) {
int hash = hash(key.hashCode());
Segment s = segmentForHash(hash);
return s == null ? null : s.remove(key, hash, null);
}
/**
* {@inheritDoc}
*
* @throws NullPointerException if the specified key is null
*/
public boolean remove(Object key, Object value) {
int hash = hash(key.hashCode());
Segment s;
return value != null && (s = segmentForHash(hash)) != null &&
s.remove(key, hash, value) != null;
}
/**
* {@inheritDoc}
*
* @throws NullPointerException if any of the arguments are null
*/
public boolean replace(K key, V oldValue, V newValue) {
int hash = hash(key.hashCode());
if (oldValue == null || newValue == null)
throw new NullPointerException();
Segment s = segmentForHash(hash);
return s != null && s.replace(key, hash, oldValue, newValue);
}
/**
* {@inheritDoc}
*
* @return the previous value associated with the specified key,
* or null if there was no mapping for the key
* @throws NullPointerException if the specified key or value is null
*/
public V replace(K key, V value) {
int hash = hash(key.hashCode());
if (value == null)
throw new NullPointerException();
Segment s = segmentForHash(hash);
return s == null ? null : s.replace(key, hash, value);
}
/**
* Removes all of the mappings from this map.
*/
public void clear() {
final Segment[] segments = this.segments;
for (int j = 0; j < segments.length; ++j) {
Segment s = segmentAt(segments, j);
if (s != null)
s.clear();
}
}
/**
* Returns a {@link Set} view of the keys contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. The set supports element
* removal, which removes the corresponding mapping from this map,
* via the Iterator.remove, Set.remove,
* removeAll, retainAll, and clear
* operations. It does not support the add or
* addAll operations.
*
* The view's iterator is a "weakly consistent" iterator
* that will never throw {@link ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
* reflect any modifications subsequent to construction.
*/
public Set keySet() {
Set ks = keySet;
return (ks != null) ? ks : (keySet = new KeySet());
}
/**
* Returns a {@link Collection} view of the values contained in this map.
* The collection is backed by the map, so changes to the map are
* reflected in the collection, and vice-versa. The collection
* supports element removal, which removes the corresponding
* mapping from this map, via the Iterator.remove,
* Collection.remove, removeAll,
* retainAll, and clear operations. It does not
* support the add or addAll operations.
*
* The view's iterator is a "weakly consistent" iterator
* that will never throw {@link ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
* reflect any modifications subsequent to construction.
*/
public Collection values() {
Collection vs = values;
return (vs != null) ? vs : (values = new Values());
}
/**
* Returns a {@link Set} view of the mappings contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. The set supports element
* removal, which removes the corresponding mapping from the map,
* via the Iterator.remove, Set.remove,
* removeAll, retainAll, and clear
* operations. It does not support the add or
* addAll operations.
*
* The view's iterator is a "weakly consistent" iterator
* that will never throw {@link ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
* reflect any modifications subsequent to construction.
*/
public Set> entrySet() {
Set> es = entrySet;
return (es != null) ? es : (entrySet = new EntrySet());
}
/**
* Returns an enumeration of the keys in this table.
*
* @return an enumeration of the keys in this table
* @see #keySet()
*/
public Enumeration keys() {
return new KeyIterator();
}
/**
* Returns an enumeration of the values in this table.
*
* @return an enumeration of the values in this table
* @see #values()
*/
public Enumeration elements() {
return new ValueIterator();
}
/* ---------------- Iterator Support -------------- */
abstract class HashIterator {
int nextSegmentIndex;
int nextTableIndex;
HashEntry[] currentTable;
HashEntry nextEntry;
HashEntry lastReturned;
HashIterator() {
nextSegmentIndex = segments.length - 1;
nextTableIndex = -1;
advance();
}
/**
* Sets nextEntry to first node of next non-empty table
* (in backwards order, to simplify checks).
*/
final void advance() {
for (;;) {
if (nextTableIndex >= 0) {
if ((nextEntry = entryAt(currentTable,
nextTableIndex--)) != null)
break;
}
else if (nextSegmentIndex >= 0) {
Segment seg = segmentAt(segments, nextSegmentIndex--);
if (seg != null && (currentTable = seg.table) != null)
nextTableIndex = currentTable.length - 1;
}
else
break;
}
}
final HashEntry nextEntry() {
HashEntry e = nextEntry;
if (e == null)
throw new NoSuchElementException();
lastReturned = e; // cannot assign until after null check
if ((nextEntry = e.next) == null)
advance();
return e;
}
public final boolean hasNext() { return nextEntry != null; }
public final boolean hasMoreElements() { return nextEntry != null; }
public final void remove() {
if (lastReturned == null)
throw new IllegalStateException();
ConcurrentHashMap.this.remove(lastReturned.key);
lastReturned = null;
}
}
final class KeyIterator
extends HashIterator
implements Iterator, Enumeration
{
public final K next() { return super.nextEntry().key; }
public final K nextElement() { return super.nextEntry().key; }
}
final class ValueIterator
extends HashIterator
implements Iterator, Enumeration
{
public final V next() { return super.nextEntry().value; }
public final V nextElement() { return super.nextEntry().value; }
}
/**
* Custom Entry class used by EntryIterator.next(), that relays
* setValue changes to the underlying map.
*/
final class WriteThroughEntry
extends AbstractMap.SimpleEntry
{
WriteThroughEntry(K k, V v) {
super(k,v);
}
/**
* Sets our entry's value and writes through to the map. The
* value to return is somewhat arbitrary here. Since a
* WriteThroughEntry does not necessarily track asynchronous
* changes, the most recent "previous" value could be
* different from what we return (or could even have been
* removed in which case the put will re-establish). We do not
* and cannot guarantee more.
*/
public V setValue(V value) {
if (value == null) throw new NullPointerException();
V v = super.setValue(value);
ConcurrentHashMap.this.put(getKey(), value);
return v;
}
}
final class EntryIterator
extends HashIterator
implements Iterator>
{
public Map.Entry next() {
HashEntry e = super.nextEntry();
return new WriteThroughEntry(e.key, e.value);
}
}
final class KeySet extends AbstractSet {
public Iterator iterator() {
return new KeyIterator();
}
public int size() {
return ConcurrentHashMap.this.size();
}
public boolean isEmpty() {
return ConcurrentHashMap.this.isEmpty();
}
public boolean contains(Object o) {
return ConcurrentHashMap.this.containsKey(o);
}
public boolean remove(Object o) {
return ConcurrentHashMap.this.remove(o) != null;
}
public void clear() {
ConcurrentHashMap.this.clear();
}
}
final class Values extends AbstractCollection {
public Iterator iterator() {
return new ValueIterator();
}
public int size() {
return ConcurrentHashMap.this.size();
}
public boolean isEmpty() {
return ConcurrentHashMap.this.isEmpty();
}
public boolean contains(Object o) {
return ConcurrentHashMap.this.containsValue(o);
}
public void clear() {
ConcurrentHashMap.this.clear();
}
}
final class EntrySet extends AbstractSet> {
public Iterator> iterator() {
return new EntryIterator();
}
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry,?> e = (Map.Entry,?>)o;
V v = ConcurrentHashMap.this.get(e.getKey());
return v != null && v.equals(e.getValue());
}
public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry,?> e = (Map.Entry,?>)o;
return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
}
public int size() {
return ConcurrentHashMap.this.size();
}
public boolean isEmpty() {
return ConcurrentHashMap.this.isEmpty();
}
public void clear() {
ConcurrentHashMap.this.clear();
}
}
/* ---------------- Serialization Support -------------- */
/**
* Saves the state of the ConcurrentHashMap instance to a
* stream (i.e., serializes it).
* @param s the stream
* @serialData
* the key (Object) and value (Object)
* for each key-value mapping, followed by a null pair.
* The key-value mappings are emitted in no particular order.
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// force all segments for serialization compatibility
for (int k = 0; k < segments.length; ++k)
ensureSegment(k);
s.defaultWriteObject();
final Segment[] segments = this.segments;
for (int k = 0; k < segments.length; ++k) {
Segment seg = segmentAt(segments, k);
seg.lock();
try {
HashEntry[] tab = seg.table;
for (int i = 0; i < tab.length; ++i) {
HashEntry e;
for (e = entryAt(tab, i); e != null; e = e.next) {
s.writeObject(e.key);
s.writeObject(e.value);
}
}
} finally {
seg.unlock();
}
}
s.writeObject(null);
s.writeObject(null);
}
/**
* Reconstitutes the ConcurrentHashMap instance from a
* stream (i.e., deserializes it).
* @param s the stream
*/
@SuppressWarnings("unchecked")
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
// Re-initialize segments to be minimally sized, and let grow.
int cap = MIN_SEGMENT_TABLE_CAPACITY;
final Segment[] segments = this.segments;
for (int k = 0; k < segments.length; ++k) {
Segment seg = segments[k];
if (seg != null) {
seg.threshold = (int)(cap * seg.loadFactor);
seg.table = (HashEntry[]) new HashEntry,?>[cap];
}
}
// Read the keys and values, and put the mappings in the table
for (;;) {
K key = (K) s.readObject();
V value = (V) s.readObject();
if (key == null)
break;
put(key, value);
}
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long SBASE;
private static final int SSHIFT;
private static final long TBASE;
private static final int TSHIFT;
static {
int ss, ts;
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class> tc = HashEntry[].class;
Class> sc = Segment[].class;
TBASE = UNSAFE.arrayBaseOffset(tc);
SBASE = UNSAFE.arrayBaseOffset(sc);
ts = UNSAFE.arrayIndexScale(tc);
ss = UNSAFE.arrayIndexScale(sc);
} catch (Exception e) {
throw new Error(e);
}
if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)
throw new Error("data type scale not a power of two");
SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);
TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
}
}