com.camunda.consulting.simulator.PayloadGenerator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of camunda-bpm-simulator Show documentation
Show all versions of camunda-bpm-simulator Show documentation
A Plugin for [Camunda BPM](http://docs.camunda.org) that simulates process execution.
package com.camunda.consulting.simulator;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.text.DateFormat;
import java.text.ParseException;
import java.time.Duration;
import java.time.Instant;
import java.time.LocalDateTime;
import java.time.LocalTime;
import java.time.Period;
import java.time.ZoneId;
import java.time.temporal.ChronoUnit;
import java.time.temporal.TemporalAmount;
import java.util.Arrays;
import java.util.Calendar;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.apache.commons.math3.distribution.NormalDistribution;
import org.camunda.bpm.engine.impl.util.ClockUtil;
import org.camunda.bpm.engine.variable.Variables;
import org.camunda.bpm.engine.variable.Variables.SerializationDataFormats;
import org.camunda.bpm.engine.variable.value.FileValue;
import org.camunda.bpm.engine.variable.value.TypedValue;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class PayloadGenerator {
private static Logger LOG = LoggerFactory.getLogger(PayloadGenerator.class);
private Map normalDistributionRegistry = new HashMap<>();
private NormalDistribution getNormalDistribution(String name, double mean, double standardDeviation) {
NormalDistribution normalDistribution = normalDistributionRegistry.get(name);
if (normalDistribution == null) {
normalDistribution = new NormalDistribution(mean, standardDeviation);
normalDistributionRegistry.put(name, normalDistribution);
}
if (mean != normalDistribution.getMean() || standardDeviation != normalDistribution.getStandardDeviation()) {
throw new RuntimeException("You cannot create two normal distribution with the same name (and different mean and deviation): " + name);
}
return normalDistribution;
}
// private NormalDistribution getNormalDistribution(String name) {
// NormalDistribution normalDistribution =
// normalDistributionRegistry.get(name);
// if (normalDistribution == null) {
// throw new RuntimeException("You have to create a normal distribution first
// with mean and deviation.");
// }
// return normalDistribution;
// }
/**
* Treats null as false. Treats numbers to be true iff greater than 0. Treats
* strings to be true if their lower-case version equals "1", "true" or "yes".
* Anything unknown is treated as false.
*
* @param o
* some object
* @return true or false
*/
public Boolean toBoolean(Object o) {
if (o == null)
return false;
if (o instanceof Boolean)
return (Boolean) o;
if (o instanceof Number)
return ((Number) o).doubleValue() > 0;
if (o instanceof String)
return ((String) o).toLowerCase().equals("true") || o.equals("1") || ((String) o).toLowerCase().equals("yes");
return false;
}
/**
* Handles null, Date, Calendar and String (by DateFormat.parse). Anything
* else will result in null.
*
* @param o
* some object
* @return the parsed date
*/
public Date toDate(Object o) {
if (o == null)
return null;
if (o instanceof Date)
return (Date) o;
if (o instanceof Calendar)
return ((Calendar) o).getTime();
if (o instanceof String)
try {
return DateFormat.getDateTimeInstance().parse((String) o);
} catch (ParseException e) {
throw new RuntimeException(e);
}
return null;
}
public Double toDouble(Object o) {
if (o == null)
return null;
if (o instanceof Number)
return ((Number) o).doubleValue();
return Double.parseDouble(o.toString());
}
public Integer toInt(Object o) {
if (o == null)
return null;
if (o instanceof Number)
return ((Number) o).intValue();
return Integer.parseInt(o.toString());
}
public Long toLong(Object o) {
if (o == null)
return null;
if (o instanceof Number)
return ((Number) o).longValue();
return Long.parseLong(o.toString());
}
public Short toShort(Object o) {
if (o == null)
return null;
if (o instanceof Number)
return ((Number) o).shortValue();
return Short.parseShort(o.toString());
}
public String toString(Object o) {
if (o == null)
return null;
return o.toString();
}
String[] firstnamesFemale = null;
String[] firstnamesMale = null;
public String firstnameFemale() {
if (firstnamesFemale == null) {
try (BufferedReader buffer = new BufferedReader(new InputStreamReader(getClass().getResourceAsStream("/firstnames-female.txt")))) {
firstnamesFemale = buffer.lines().toArray(String[]::new);
} catch (IOException e) {
LOG.error("Could not load female first names");
firstnamesFemale = new String[] { "Jane" };
}
}
return firstnamesFemale[(int) (Math.random() * firstnamesFemale.length)];
}
public String firstnameMale() {
if (firstnamesMale == null) {
try (BufferedReader buffer = new BufferedReader(new InputStreamReader(getClass().getResourceAsStream("/firstnames-male.txt")))) {
firstnamesMale = buffer.lines().toArray(String[]::new);
} catch (IOException e) {
LOG.error("Could not load male first names");
firstnamesMale = new String[] { "John" };
}
}
return firstnamesMale[(int) (Math.random() * firstnamesMale.length)];
}
/**
* Female/male 50:50
*
* @return some first name
*/
public String firstname() {
return Math.random() < 0.5 ? firstnameFemale() : firstnameMale();
}
String[] surnamesGerman = null;
String[] surnamesEnglish = null;
public String surnameGerman() {
if (surnamesGerman == null) {
try (BufferedReader buffer = new BufferedReader(new InputStreamReader(getClass().getResourceAsStream("/surnames-de.txt")))) {
surnamesGerman = buffer.lines().toArray(String[]::new);
} catch (IOException e) {
LOG.error("Could not load german surnames");
surnamesGerman = new String[] { "Mustermann" };
}
}
return surnamesGerman[(int) (Math.random() * surnamesGerman.length)];
}
public String surnameEnglish() {
if (surnamesEnglish == null) {
try (BufferedReader buffer = new BufferedReader(new InputStreamReader(getClass().getResourceAsStream("/surnames-en.txt")))) {
surnamesEnglish = buffer.lines().toArray(String[]::new);
} catch (IOException e) {
LOG.error("Could not load english surnames");
surnamesEnglish = new String[] { "Doe" };
}
}
return surnamesEnglish[(int) (Math.random() * surnamesEnglish.length)];
}
/**
* Evenly distributed birth date, minAge and maxAge in respect to current
* simulation time.
*
* @param minAge
* minimum age
* @param maxAge
* maximum age
* @return a birthdate
*/
public Date uniformBirthdate(int minAge, int maxAge) {
Calendar calMin = Calendar.getInstance();
calMin.setTime(ClockUtil.getCurrentTime());
calMin.set(Calendar.HOUR_OF_DAY, 0);
calMin.set(Calendar.MINUTE, 0);
calMin.set(Calendar.SECOND, 0);
calMin.set(Calendar.MILLISECOND, 0);
Calendar calMax = (Calendar) calMin.clone();
calMin.add(Calendar.YEAR, -maxAge);
calMax.add(Calendar.YEAR, -minAge);
long minMillis = calMin.getTimeInMillis();
long maxMillis = calMax.getTimeInMillis();
long chosenMillis = minMillis + (long) (Math.random() * (maxMillis - minMillis));
return Date.from(Instant.ofEpochMilli(chosenMillis));
}
@SuppressWarnings("unchecked")
public T uniformFromArgs2(T o1, T o2) {
return (T) uniformFromArray(new Object[] { o1, o2 });
}
@SuppressWarnings("unchecked")
public T uniformFromArgs3(T o1, T o2, T o3) {
return (T) uniformFromArray(new Object[] { o1, o2, o3 });
}
@SuppressWarnings("unchecked")
public T uniformFromArgs4(T o1, T o2, T o3, T o4) {
return (T) uniformFromArray(new Object[] { o1, o2, o3, o4 });
}
@SuppressWarnings("unchecked")
public T uniformFromArgs5(T o1, T o2, T o3, T o4, T o5) {
return (T) uniformFromArray(new Object[] { o1, o2, o3, o4, o5 });
}
@SuppressWarnings("unchecked")
public T uniformFromArgs6(T o1, T o2, T o3, T o4, T o5, T o6) {
return (T) uniformFromArray(new Object[] { o1, o2, o3, o4, o5, o6 });
}
@SuppressWarnings("unchecked")
public T uniformFromArgs7(T o1, T o2, T o3, T o4, T o5, T o6, T o7) {
return (T) uniformFromArray(new Object[] { o1, o2, o3, o4, o5, o6, o7 });
}
@SuppressWarnings("unchecked")
public T uniformFromArgs8(T o1, T o2, T o3, T o4, T o5, T o6, T o7, T o8) {
return (T) uniformFromArray(new Object[] { o1, o2, o3, o4, o5, o6, o7, o8 });
}
@SuppressWarnings("unchecked")
public T uniformFromArgs9(T o1, T o2, T o3, T o4, T o5, T o6, T o7, T o8, T o9) {
return (T) uniformFromArray(new Object[] { o1, o2, o3, o4, o5, o6, o7, o8, o9 });
}
public Object uniformFromArray(Object[] objects) {
if (objects == null || objects.length == 0)
return null;
return objects[(int) (Math.random() * objects.length)];
}
public Object uniformFromList(List> objects) {
if (objects == null || objects.size() == 0)
return null;
return objects.get((int) (Math.random() * objects.size()));
}
/**
* As always min lq returnValue le max.
*
* @param min
* minimum value
* @param max
* maximum value
* @return a random value
*/
public Short uniformShort(short min, short max) {
return (short) (min + (short) Math.floor(((Math.random() * (max - min)))));
}
/**
* As always min lq returnValue le max.
*
* @param min
* minimum value
* @param max
* maximum value
* @return a random value
*/
public Integer uniformInt(int min, int max) {
return min + (int) Math.floor(((Math.random() * (max - min))));
}
/**
* Returns a normally distributed value around a mean value with standard
* deviation. A name of the distribution must be given to keep the state.
*
* @param distributionName
* @param mean
* @param standardDeviation
* @return
*/
public Double normal(String distributionName, double mean, double standardDeviation) {
return getNormalDistribution(distributionName, mean, standardDeviation).sample();
}
/**
* As always min lq returnValue le max.
*
* @param min
* minimum value
* @param max
* maximum value
* @return a random value
*/
public Long uniformLong(long min, long max) {
return min + (long) Math.floor(((Math.random() * (max - min))));
}
/**
* As always min lq returnValue le max.
*
* @param min
* minimum value
* @param max
* maximum value
* @return a random value
*/
public Double uniformDouble(double min, double max) {
return min + Math.random() * (max - min);
}
public Boolean uniformBoolean() {
return Math.random() < 0.5;
}
public Boolean randBool(double probability) {
return uniformBooleanByProbability(probability);
}
public Boolean uniformBooleanByProbability(double probability) {
return Math.random() < probability;
}
public FileValue smallPdf(String name) {
try (InputStream data = getClass().getResourceAsStream("/mockument.pdf");) {
return Variables.fileValue(name.toLowerCase().endsWith(".pdf") ? name : name + ".pdf").mimeType("application/pdf").file(data).create();
} catch (IOException e) {
LOG.error("Could not load mockument");
return Variables.fileValue("Error loading content").create();
}
}
public Object ifthenelse(Object condition, Object whenTrue, Object whenFalse) {
return toBoolean(condition) ? whenTrue : whenFalse;
}
private Long uniqueNumber = 1l;
public Long uniqueNumber() {
return uniqueNumber++;
}
public String email(String name, String company) {
return name.trim().toLowerCase().replaceAll("\\s", "").replaceAll("\\W", ".") + "@" + company.trim().toLowerCase().replaceAll("\\W", "-") + ".com";
}
public String format1(String pattern, Object o1) {
return String.format(pattern, o1);
}
public String format2(String pattern, Object o1, Object o2) {
return String.format(pattern, o1, o2);
}
public String format3(String pattern, Object o1, Object o2, Object o3) {
return String.format(pattern, o1, o2, o3);
}
public String format4(String pattern, Object o1, Object o2, Object o3, Object o4) {
return String.format(pattern, o1, o2, o3, o4);
}
public String format5(String pattern, Object o1, Object o2, Object o3, Object o4, Object o5) {
return String.format(pattern, o1, o2, o3, o4, o5);
}
public String format6(String pattern, Object o1, Object o2, Object o3, Object o4, Object o5, Object o6) {
return String.format(pattern, o1, o2, o3, o4, o5, o6);
}
public String format7(String pattern, Object o1, Object o2, Object o3, Object o4, Object o5, Object o6, Object o7) {
return String.format(pattern, o1, o2, o3, o4, o5, o6, o7);
}
public String format8(String pattern, Object o1, Object o2, Object o3, Object o4, Object o5, Object o6, Object o7, Object o8) {
return String.format(pattern, o1, o2, o3, o4, o5, o6, o7, o8);
}
public String format9(String pattern, Object o1, Object o2, Object o3, Object o4, Object o5, Object o6, Object o7, Object o8, Object o9) {
return String.format(pattern, o1, o2, o3, o4, o5, o6, o7, o8, o9);
}
public TypedValue json(Object o) {
return Variables.objectValue(o).serializationDataFormat(SerializationDataFormats.JSON).create();
}
public TypedValue xml(Object o) {
return Variables.objectValue(o).serializationDataFormat(SerializationDataFormats.XML).create();
}
public TypedValue java(Object o) {
return Variables.objectValue(o).serializationDataFormat(SerializationDataFormats.JAVA).create();
}
public List listFromArray(T[] items) {
return Arrays.asList(items);
}
public List> emptyList() {
return Collections.emptyList();
}
@SuppressWarnings("unchecked")
public List listFromArgs1(T o1) {
return (List) listFromArray(new Object[] { o1 });
}
@SuppressWarnings("unchecked")
public List listFromArgs2(T o1, T o2) {
return (List) listFromArray(new Object[] { o1, o2 });
}
@SuppressWarnings("unchecked")
public List listFromArgs3(T o1, T o2, T o3) {
return (List) listFromArray(new Object[] { o1, o2, o3 });
}
@SuppressWarnings("unchecked")
public List listFromArgs4(T o1, T o2, T o3, T o4) {
return (List) listFromArray(new Object[] { o1, o2, o3, o4 });
}
@SuppressWarnings("unchecked")
public List listFromArgs5(T o1, T o2, T o3, T o4, T o5) {
return (List) listFromArray(new Object[] { o1, o2, o3, o4, o5 });
}
@SuppressWarnings("unchecked")
public List listFromArgs6(T o1, T o2, T o3, T o4, T o5, T o6) {
return (List) listFromArray(new Object[] { o1, o2, o3, o4, o5, o6 });
}
@SuppressWarnings("unchecked")
public List listFromArgs7(T o1, T o2, T o3, T o4, T o5, T o6, T o7) {
return (List) listFromArray(new Object[] { o1, o2, o3, o4, o5, o6, o7 });
}
@SuppressWarnings("unchecked")
public List listFromArgs8(T o1, T o2, T o3, T o4, T o5, T o6, T o7, T o8) {
return (List) listFromArray(new Object[] { o1, o2, o3, o4, o5, o6, o7, o8 });
}
@SuppressWarnings("unchecked")
public List listFromArgs9(T o1, T o2, T o3, T o4, T o5, T o6, T o7, T o8, T o9) {
return (List) listFromArray(new Object[] { o1, o2, o3, o4, o5, o6, o7, o8, o9 });
}
/**
* Current process engine's time.
*
* @return
*/
public Date now() {
return ClockUtil.getCurrentTime();
}
/**
* Current process engine's time plus given amount of milliseconds (negative
* values allowed).
*
* @return
*/
public Date nowPlusMillis(int millis) {
return nowPlusPeriod(Duration.ofMillis(millis));
}
/**
* Current process engine's time plus given amount of seconds (negative values
* allowed).
*
* @return
*/
public Date nowPlusSeconds(int seconds) {
return nowPlusPeriod(Duration.ofSeconds(seconds));
}
/**
* Current process engine's time plus given amount of minutes (negative values
* allowed).
*
* @return
*/
public Date nowPlusMinutes(int minutes) {
return nowPlusPeriod(Duration.ofMinutes(minutes));
}
/**
* Current process engine's time plus given amount of hours (negative values
* allowed).
*
* @return
*/
public Date nowPlusHours(int hours) {
return nowPlusPeriod(Duration.ofHours(hours));
}
/**
* Current process engine's time plus given amount of days (negative values
* allowed).
*
* @return
*/
public Date nowPlusDays(int days) {
return nowPlusPeriod(Period.ofDays(days));
}
/**
* Current process engine's time plus given amount of weeks (negative values
* allowed).
*
* @return
*/
public Date nowPlusWeeks(int weeks) {
return nowPlusPeriod(Period.ofWeeks(weeks));
}
/**
* Current process engine's time plus given amount of months (negative values
* allowed).
*
* @return
*/
public Date nowPlusMonths(int months) {
return nowPlusPeriod(Period.ofMonths(months));
}
/**
* Current process engine's time plus given amount of years (negative values
* allowed).
*
* @return
*/
public Date nowPlusYears(int years) {
return nowPlusPeriod(Period.ofYears(years));
}
public Date nowPlusPeriod(TemporalAmount amount) {
return Date
.from(LocalDateTime.ofInstant(ClockUtil.getCurrentTime().toInstant(), ZoneId.systemDefault()).plus(amount).atZone(ZoneId.systemDefault()).toInstant());
}
/**
* Calculates the next time based on current time such that consecutive
* calling of this function provides approximately 'times' results per day
* between 'morning' and 'evening'.
*
* @param uniqueName
* To identify the distribution used
* @param morning
* in format 'hh:mm'
* @param evening
* in format 'hh:mm'
* @param times
* must be at least 1
* @return
*/
public Date timesPerDay(String uniqueName, String morning, String evening, long times) {
if (times < 1) {
throw new IllegalArgumentException("times must be at least 1");
}
final LocalTime morningTime = LocalTime.parse(morning);
final LocalTime eveningTime = LocalTime.parse(evening);
final LocalDateTime now = LocalDateTime.ofInstant(ClockUtil.getCurrentTime().toInstant(), ZoneId.systemDefault());
final LocalDateTime todayMorning = now.with(morningTime);
final LocalDateTime todayEvening = todayMorning.with(eveningTime);
final long intervalNanos = todayMorning.until(todayEvening, ChronoUnit.NANOS) / times;
// since intervalNanos depends on morning/evening/times and that could change intentionally,
// we have to make sure to use a "new" normal distribution whenever morning/evening/times changes
final long randomizedIntervalNanos = normal(uniqueName + Long.toString(intervalNanos), intervalNanos, intervalNanos / 3).longValue();
LocalDateTime nextSample = now.plusNanos(randomizedIntervalNanos);
if (nextSample.isBefore(todayMorning)) {
nextSample = todayMorning.plusNanos(randomizedIntervalNanos/2);
}
if (nextSample.isAfter(todayEvening)) {
final LocalDateTime tomorrowMorning = todayMorning.plusDays(1);
final LocalDateTime tomorrowEvening = todayEvening.plusDays(1);
long overhangNanos = todayEvening.until(nextSample, ChronoUnit.NANOS);
nextSample = tomorrowMorning.plusNanos(overhangNanos);
// in theory, it is possible to be again behind the evening hours, so...
if (nextSample.isAfter(tomorrowEvening)) {
final LocalDateTime dayAfterTomorrowMorning = tomorrowMorning.plusDays(1);
overhangNanos = tomorrowEvening.until(nextSample, ChronoUnit.NANOS);
nextSample = dayAfterTomorrowMorning.plusNanos(overhangNanos);
}
}
return Date.from(nextSample.atZone(ZoneId.systemDefault()).toInstant());
}
/**
* Returns an integer that linearly increases from start to end of a history
* simulation between min and max. If no history simulation is running, always
* max is returned.
*
* @param min
* @param max
* @return
*/
public Integer linearBySimulationTime(int min, int max) {
return min + (int) (SimulationExecutor.getProgress() * (max - min));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy