All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.pqc.math.linearalgebra.GF2nPolynomialElement Maven / Gradle / Ivy

The newest version!
package org.bouncycastle.pqc.math.linearalgebra;


import java.math.BigInteger;
import java.util.Random;


/**
 * This class implements elements of finite binary fields GF(2n)
 * using polynomial representation. For more information on the arithmetic see
 * for example IEEE Standard 1363 or  Certicom online-tutorial.
 *
 * @see "GF2nField"
 * @see GF2nPolynomialField
 * @see GF2nONBElement
 * @see GF2Polynomial
 */
public class GF2nPolynomialElement
    extends GF2nElement
{

    // pre-computed Bitmask for fast masking, bitMask[a]=0x1 << a
    private static final int[] bitMask = {0x00000001, 0x00000002, 0x00000004,
        0x00000008, 0x00000010, 0x00000020, 0x00000040, 0x00000080,
        0x00000100, 0x00000200, 0x00000400, 0x00000800, 0x00001000,
        0x00002000, 0x00004000, 0x00008000, 0x00010000, 0x00020000,
        0x00040000, 0x00080000, 0x00100000, 0x00200000, 0x00400000,
        0x00800000, 0x01000000, 0x02000000, 0x04000000, 0x08000000,
        0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x00000000};

    // the used GF2Polynomial which stores the coefficients
    private GF2Polynomial polynomial;

    /**
     * Create a new random GF2nPolynomialElement using the given field and
     * source of randomness.
     *
     * @param f    the GF2nField to use
     * @param rand the source of randomness
     */
    public GF2nPolynomialElement(GF2nPolynomialField f, Random rand)
    {
        mField = f;
        mDegree = mField.getDegree();
        polynomial = new GF2Polynomial(mDegree);
        randomize(rand);
    }

    /**
     * Creates a new GF2nPolynomialElement using the given field and Bitstring.
     *
     * @param f  the GF2nPolynomialField to use
     * @param bs the desired value as Bitstring
     */
    public GF2nPolynomialElement(GF2nPolynomialField f, GF2Polynomial bs)
    {
        mField = f;
        mDegree = mField.getDegree();
        polynomial = new GF2Polynomial(bs);
        polynomial.expandN(mDegree);
    }

    /**
     * Creates a new GF2nPolynomialElement using the given field f and
     * byte[] os as value. The conversion is done according to 1363.
     *
     * @param f  the GF2nField to use
     * @param os the octet string to assign to this GF2nPolynomialElement
     * @see "P1363 5.5.5 p23, OS2FEP/OS2BSP"
     */
    public GF2nPolynomialElement(GF2nPolynomialField f, byte[] os)
    {
        mField = f;
        mDegree = mField.getDegree();
        polynomial = new GF2Polynomial(mDegree, os);
        polynomial.expandN(mDegree);
    }

    /**
     * Creates a new GF2nPolynomialElement using the given field f and
     * int[] is as value.
     *
     * @param f  the GF2nField to use
     * @param is the integer string to assign to this GF2nPolynomialElement
     */
    public GF2nPolynomialElement(GF2nPolynomialField f, int[] is)
    {
        mField = f;
        mDegree = mField.getDegree();
        polynomial = new GF2Polynomial(mDegree, is);
        polynomial.expandN(f.mDegree);
    }

    /**
     * Creates a new GF2nPolynomialElement by cloning the given
     * GF2nPolynomialElement b.
     *
     * @param other the GF2nPolynomialElement to clone
     */
    public GF2nPolynomialElement(GF2nPolynomialElement other)
    {
        mField = other.mField;
        mDegree = other.mDegree;
        polynomial = new GF2Polynomial(other.polynomial);
    }

    // /////////////////////////////////////////////////////////////////////
    // pseudo-constructors
    // /////////////////////////////////////////////////////////////////////

    /**
     * Creates a new GF2nPolynomialElement by cloning this
     * GF2nPolynomialElement.
     *
     * @return a copy of this element
     */
    public Object clone()
    {
        return new GF2nPolynomialElement(this);
    }

    // /////////////////////////////////////////////////////////////////////
    // assignments
    // /////////////////////////////////////////////////////////////////////

    /**
     * Assigns the value 'zero' to this Polynomial.
     */
    void assignZero()
    {
        polynomial.assignZero();
    }

    /**
     * Create the zero element.
     *
     * @param f the finite field
     * @return the zero element in the given finite field
     */
    public static GF2nPolynomialElement ZERO(GF2nPolynomialField f)
    {
        GF2Polynomial polynomial = new GF2Polynomial(f.getDegree());
        return new GF2nPolynomialElement(f, polynomial);
    }

    /**
     * Create the one element.
     *
     * @param f the finite field
     * @return the one element in the given finite field
     */
    public static GF2nPolynomialElement ONE(GF2nPolynomialField f)
    {
        GF2Polynomial polynomial = new GF2Polynomial(f.getDegree(),
            new int[]{1});
        return new GF2nPolynomialElement(f, polynomial);
    }

    /**
     * Assigns the value 'one' to this Polynomial.
     */
    void assignOne()
    {
        polynomial.assignOne();
    }

    /**
     * Assign a random value to this GF2nPolynomialElement using the specified
     * source of randomness.
     *
     * @param rand the source of randomness
     */
    private void randomize(Random rand)
    {
        polynomial.expandN(mDegree);
        polynomial.randomize(rand);
    }

    // /////////////////////////////////////////////////////////////////////
    // comparison
    // /////////////////////////////////////////////////////////////////////

    /**
     * Checks whether this element is zero.
     *
     * @return true if this is the zero element
     */
    public boolean isZero()
    {
        return polynomial.isZero();
    }

    /**
     * Tests if the GF2nPolynomialElement has 'one' as value.
     *
     * @return true if this equals one (this == 1)
     */
    public boolean isOne()
    {
        return polynomial.isOne();
    }

    /**
     * Compare this element with another object.
     *
     * @param other the other object
     * @return true if the two objects are equal, false
     *         otherwise
     */
    public boolean equals(Object other)
    {
        if (other == null || !(other instanceof GF2nPolynomialElement))
        {
            return false;
        }
        GF2nPolynomialElement otherElem = (GF2nPolynomialElement)other;

        if (mField != otherElem.mField)
        {
            if (!mField.getFieldPolynomial().equals(
                otherElem.mField.getFieldPolynomial()))
            {
                return false;
            }
        }

        return polynomial.equals(otherElem.polynomial);
    }

    /**
     * @return the hash code of this element
     */
    public int hashCode()
    {
        return mField.hashCode() + polynomial.hashCode();
    }

    // /////////////////////////////////////////////////////////////////////
    // access
    // /////////////////////////////////////////////////////////////////////

    /**
     * Returns the value of this GF2nPolynomialElement in a new Bitstring.
     *
     * @return the value of this GF2nPolynomialElement in a new Bitstring
     */
    private GF2Polynomial getGF2Polynomial()
    {
        return new GF2Polynomial(polynomial);
    }

    /**
     * Checks whether the indexed bit of the bit representation is set.
     *
     * @param index the index of the bit to test
     * @return true if the indexed bit is set
     */
    boolean testBit(int index)
    {
        return polynomial.testBit(index);
    }

    /**
     * Returns whether the rightmost bit of the bit representation is set. This
     * is needed for data conversion according to 1363.
     *
     * @return true if the rightmost bit of this element is set
     */
    public boolean testRightmostBit()
    {
        return polynomial.testBit(0);
    }

    /**
     * Compute the sum of this element and addend.
     *
     * @param addend the addend
     * @return this + other (newly created)
     */
    public GFElement add(GFElement addend)
        throws RuntimeException
    {
        GF2nPolynomialElement result = new GF2nPolynomialElement(this);
        result.addToThis(addend);
        return result;
    }

    /**
     * Compute this + addend (overwrite this).
     *
     * @param addend the addend
     */
    public void addToThis(GFElement addend)
        throws RuntimeException
    {
        if (!(addend instanceof GF2nPolynomialElement))
        {
            throw new RuntimeException();
        }
        if (!mField.equals(((GF2nPolynomialElement)addend).mField))
        {
            throw new RuntimeException();
        }
        polynomial.addToThis(((GF2nPolynomialElement)addend).polynomial);
    }

    /**
     * Returns this element + 'one".
     *
     * @return this + 'one'
     */
    public GF2nElement increase()
    {
        GF2nPolynomialElement result = new GF2nPolynomialElement(this);
        result.increaseThis();
        return result;
    }

    /**
     * Increases this element by 'one'.
     */
    public void increaseThis()
    {
        polynomial.increaseThis();
    }

    /**
     * Compute the product of this element and factor.
     *
     * @param factor the factor
     * @return this * factor (newly created)
     */
    public GFElement multiply(GFElement factor)
        throws RuntimeException
    {
        GF2nPolynomialElement result = new GF2nPolynomialElement(this);
        result.multiplyThisBy(factor);
        return result;
    }

    /**
     * Compute this * factor (overwrite this).
     *
     * @param factor the factor
     */
    public void multiplyThisBy(GFElement factor)
        throws RuntimeException
    {
        if (!(factor instanceof GF2nPolynomialElement))
        {
            throw new RuntimeException();
        }
        if (!mField.equals(((GF2nPolynomialElement)factor).mField))
        {
            throw new RuntimeException();
        }
        if (equals(factor))
        {
            squareThis();
            return;
        }
        polynomial = polynomial
            .multiply(((GF2nPolynomialElement)factor).polynomial);
        reduceThis();
    }

    /**
     * Compute the multiplicative inverse of this element.
     *
     * @return this-1 (newly created)
     * @throws ArithmeticException if this is the zero element.
     * @see GF2nPolynomialElement#invertMAIA
     * @see GF2nPolynomialElement#invertEEA
     * @see GF2nPolynomialElement#invertSquare
     */
    public GFElement invert()
        throws ArithmeticException
    {
        return invertMAIA();
    }

    /**
     * Calculates the multiplicative inverse of this and returns the
     * result in a new GF2nPolynomialElement.
     *
     * @return this^(-1)
     * @throws ArithmeticException if this equals zero
     */
    public GF2nPolynomialElement invertEEA()
        throws ArithmeticException
    {
        if (isZero())
        {
            throw new ArithmeticException();
        }
        GF2Polynomial b = new GF2Polynomial(mDegree + 32, "ONE");
        b.reduceN();
        GF2Polynomial c = new GF2Polynomial(mDegree + 32);
        c.reduceN();
        GF2Polynomial u = getGF2Polynomial();
        GF2Polynomial v = mField.getFieldPolynomial();
        GF2Polynomial h;
        int j;
        u.reduceN();
        while (!u.isOne())
        {
            u.reduceN();
            v.reduceN();
            j = u.getLength() - v.getLength();
            if (j < 0)
            {
                h = u;
                u = v;
                v = h;
                h = b;
                b = c;
                c = h;
                j = -j;
                c.reduceN(); // this increases the performance
            }
            u.shiftLeftAddThis(v, j);
            b.shiftLeftAddThis(c, j);
        }
        b.reduceN();
        return new GF2nPolynomialElement((GF2nPolynomialField)mField, b);
    }

    /**
     * Calculates the multiplicative inverse of this and returns the
     * result in a new GF2nPolynomialElement.
     *
     * @return this^(-1)
     * @throws ArithmeticException if this equals zero
     */
    public GF2nPolynomialElement invertSquare()
        throws ArithmeticException
    {
        GF2nPolynomialElement n;
        GF2nPolynomialElement u;
        int i, j, k, b;

        if (isZero())
        {
            throw new ArithmeticException();
        }
        // b = (n-1)
        b = mField.getDegree() - 1;
        // n = a
        n = new GF2nPolynomialElement(this);
        n.polynomial.expandN((mDegree << 1) + 32); // increase performance
        n.polynomial.reduceN();
        // k = 1
        k = 1;

        // for i = (r-1) downto 0 do, r=bitlength(b)
        for (i = IntegerFunctions.floorLog(b) - 1; i >= 0; i--)
        {
            // u = n
            u = new GF2nPolynomialElement(n);
            // for j = 1 to k do
            for (j = 1; j <= k; j++)
            {
                // u = u^2
                u.squareThisPreCalc();
            }
            // n = nu
            n.multiplyThisBy(u);
            // k = 2k
            k <<= 1;
            // if b(i)==1
            if ((b & bitMask[i]) != 0)
            {
                // n = n^2 * b
                n.squareThisPreCalc();
                n.multiplyThisBy(this);
                // k = k+1
                k += 1;
            }
        }

        // outpur n^2
        n.squareThisPreCalc();
        return n;
    }

    /**
     * Calculates the multiplicative inverse of this using the modified
     * almost inverse algorithm and returns the result in a new
     * GF2nPolynomialElement.
     *
     * @return this^(-1)
     * @throws ArithmeticException if this equals zero
     */
    public GF2nPolynomialElement invertMAIA()
        throws ArithmeticException
    {
        if (isZero())
        {
            throw new ArithmeticException();
        }
        GF2Polynomial b = new GF2Polynomial(mDegree, "ONE");
        GF2Polynomial c = new GF2Polynomial(mDegree);
        GF2Polynomial u = getGF2Polynomial();
        GF2Polynomial v = mField.getFieldPolynomial();
        GF2Polynomial h;
        while (true)
        {
            while (!u.testBit(0))
            { // x|u (x divides u)
                u.shiftRightThis(); // u = u / x
                if (!b.testBit(0))
                {
                    b.shiftRightThis();
                }
                else
                {
                    b.addToThis(mField.getFieldPolynomial());
                    b.shiftRightThis();
                }
            }
            if (u.isOne())
            {
                return new GF2nPolynomialElement((GF2nPolynomialField)mField,
                    b);
            }
            u.reduceN();
            v.reduceN();
            if (u.getLength() < v.getLength())
            {
                h = u;
                u = v;
                v = h;
                h = b;
                b = c;
                c = h;
            }
            u.addToThis(v);
            b.addToThis(c);
        }
    }

    /**
     * This method is used internally to map the square()-calls within
     * GF2nPolynomialElement to one of the possible squaring methods.
     *
     * @return this2 (newly created)
     * @see GF2nPolynomialElement#squarePreCalc
     */
    public GF2nElement square()
    {
        return squarePreCalc();
    }

    /**
     * This method is used internally to map the square()-calls within
     * GF2nPolynomialElement to one of the possible squaring methods.
     */
    public void squareThis()
    {
        squareThisPreCalc();
    }

    /**
     * Squares this GF2nPolynomialElement using GF2nField's squaring matrix.
     * This is supposed to be fast when using a polynomial (no tri- or
     * pentanomial) as fieldpolynomial. Use squarePreCalc when using a tri- or
     * pentanomial as fieldpolynomial instead.
     *
     * @return this2 (newly created)
     * @see GF2Polynomial#vectorMult
     * @see GF2nPolynomialElement#squarePreCalc
     * @see GF2nPolynomialElement#squareBitwise
     */
    public GF2nPolynomialElement squareMatrix()
    {
        GF2nPolynomialElement result = new GF2nPolynomialElement(this);
        result.squareThisMatrix();
        result.reduceThis();
        return result;
    }

    /**
     * Squares this GF2nPolynomialElement using GF2nFields squaring matrix. This
     * is supposed to be fast when using a polynomial (no tri- or pentanomial)
     * as fieldpolynomial. Use squarePreCalc when using a tri- or pentanomial as
     * fieldpolynomial instead.
     *
     * @see GF2Polynomial#vectorMult
     * @see GF2nPolynomialElement#squarePreCalc
     * @see GF2nPolynomialElement#squareBitwise
     */
    public void squareThisMatrix()
    {
        GF2Polynomial result = new GF2Polynomial(mDegree);
        for (int i = 0; i < mDegree; i++)
        {
            if (polynomial
                .vectorMult(((GF2nPolynomialField)mField).squaringMatrix[mDegree
                    - i - 1]))
            {
                result.setBit(i);

            }
        }
        polynomial = result;
    }

    /**
     * Squares this GF2nPolynomialElement by shifting left its Bitstring and
     * reducing. This is supposed to be the slowest method. Use squarePreCalc or
     * squareMatrix instead.
     *
     * @return this2 (newly created)
     * @see GF2nPolynomialElement#squareMatrix
     * @see GF2nPolynomialElement#squarePreCalc
     * @see GF2Polynomial#squareThisBitwise
     */
    public GF2nPolynomialElement squareBitwise()
    {
        GF2nPolynomialElement result = new GF2nPolynomialElement(this);
        result.squareThisBitwise();
        result.reduceThis();
        return result;
    }

    /**
     * Squares this GF2nPolynomialElement by shifting left its Bitstring and
     * reducing. This is supposed to be the slowest method. Use squarePreCalc or
     * squareMatrix instead.
     *
     * @see GF2nPolynomialElement#squareMatrix
     * @see GF2nPolynomialElement#squarePreCalc
     * @see GF2Polynomial#squareThisBitwise
     */
    public void squareThisBitwise()
    {
        polynomial.squareThisBitwise();
        reduceThis();
    }

    /**
     * Squares this GF2nPolynomialElement by using precalculated values and
     * reducing. This is supposed to de fastest when using a trinomial or
     * pentanomial as field polynomial. Use squareMatrix when using a ordinary
     * polynomial as field polynomial.
     *
     * @return this2 (newly created)
     * @see GF2nPolynomialElement#squareMatrix
     * @see GF2Polynomial#squareThisPreCalc
     */
    public GF2nPolynomialElement squarePreCalc()
    {
        GF2nPolynomialElement result = new GF2nPolynomialElement(this);
        result.squareThisPreCalc();
        result.reduceThis();
        return result;
    }

    /**
     * Squares this GF2nPolynomialElement by using precalculated values and
     * reducing. This is supposed to de fastest when using a tri- or pentanomial
     * as fieldpolynomial. Use squareMatrix when using a ordinary polynomial as
     * fieldpolynomial.
     *
     * @see GF2nPolynomialElement#squareMatrix
     * @see GF2Polynomial#squareThisPreCalc
     */
    public void squareThisPreCalc()
    {
        polynomial.squareThisPreCalc();
        reduceThis();
    }

    /**
     * Calculates this to the power of k and returns the result
     * in a new GF2nPolynomialElement.
     *
     * @param k the power
     * @return this^k in a new GF2nPolynomialElement
     */
    public GF2nPolynomialElement power(int k)
    {
        if (k == 1)
        {
            return new GF2nPolynomialElement(this);
        }

        GF2nPolynomialElement result = GF2nPolynomialElement
            .ONE((GF2nPolynomialField)mField);
        if (k == 0)
        {
            return result;
        }

        GF2nPolynomialElement x = new GF2nPolynomialElement(this);
        x.polynomial.expandN((x.mDegree << 1) + 32); // increase performance
        x.polynomial.reduceN();

        for (int i = 0; i < mDegree; i++)
        {
            if ((k & (1 << i)) != 0)
            {
                result.multiplyThisBy(x);
            }
            x.square();
        }

        return result;
    }

    /**
     * Compute the square root of this element and return the result in a new
     * {@link GF2nPolynomialElement}.
     *
     * @return this1/2 (newly created)
     */
    public GF2nElement squareRoot()
    {
        GF2nPolynomialElement result = new GF2nPolynomialElement(this);
        result.squareRootThis();
        return result;
    }

    /**
     * Compute the square root of this element.
     */
    public void squareRootThis()
    {
        // increase performance
        polynomial.expandN((mDegree << 1) + 32);
        polynomial.reduceN();
        for (int i = 0; i < mField.getDegree() - 1; i++)
        {
            squareThis();
        }
    }

    /**
     * Solves the quadratic equation z2 + z = this if
     * such a solution exists. This method returns one of the two possible
     * solutions. The other solution is z + 1. Use z.increase() to
     * compute this solution.
     *
     * @return a GF2nPolynomialElement representing one z satisfying the
     *         equation z2 + z = this
     * @see "IEEE 1363, Annex A.4.7"
     */
    public GF2nElement solveQuadraticEquation()
        throws RuntimeException
    {
        if (isZero())
        {
            return ZERO((GF2nPolynomialField)mField);
        }

        if ((mDegree & 1) == 1)
        {
            return halfTrace();
        }

        // TODO this can be sped-up by precomputation of p and w's
        GF2nPolynomialElement z, w;
        do
        {
            // step 1.
            GF2nPolynomialElement p = new GF2nPolynomialElement(
                (GF2nPolynomialField)mField, new Random());
            // step 2.
            z = ZERO((GF2nPolynomialField)mField);
            w = (GF2nPolynomialElement)p.clone();
            // step 3.
            for (int i = 1; i < mDegree; i++)
            {
                // compute z = z^2 + w^2 * this
                // and w = w^2 + p
                z.squareThis();
                w.squareThis();
                z.addToThis(w.multiply(this));
                w.addToThis(p);
            }
        }
        while (w.isZero()); // step 4.

        if (!equals(z.square().add(z)))
        {
            throw new RuntimeException();
        }

        // step 5.
        return z;
    }

    /**
     * Returns the trace of this GF2nPolynomialElement.
     *
     * @return the trace of this GF2nPolynomialElement
     */
    public int trace()
    {
        GF2nPolynomialElement t = new GF2nPolynomialElement(this);
        int i;

        for (i = 1; i < mDegree; i++)
        {
            t.squareThis();
            t.addToThis(this);
        }

        if (t.isOne())
        {
            return 1;
        }
        return 0;
    }

    /**
     * Returns the half-trace of this GF2nPolynomialElement.
     *
     * @return a GF2nPolynomialElement representing the half-trace of this
     *         GF2nPolynomialElement.
     */
    private GF2nPolynomialElement halfTrace()
        throws RuntimeException
    {
        if ((mDegree & 0x01) == 0)
        {
            throw new RuntimeException();
        }
        int i;
        GF2nPolynomialElement h = new GF2nPolynomialElement(this);

        for (i = 1; i <= ((mDegree - 1) >> 1); i++)
        {
            h.squareThis();
            h.squareThis();
            h.addToThis(this);
        }

        return h;
    }

    /**
     * Reduces this GF2nPolynomialElement modulo the field-polynomial.
     *
     * @see GF2Polynomial#reduceTrinomial
     * @see GF2Polynomial#reducePentanomial
     */
    private void reduceThis()
    {
        if (polynomial.getLength() > mDegree)
        { // really reduce ?
            if (((GF2nPolynomialField)mField).isTrinomial())
            { // fieldpolonomial
                // is trinomial
                int tc;
                try
                {
                    tc = ((GF2nPolynomialField)mField).getTc();
                }
                catch (RuntimeException NATExc)
                {
                    throw new RuntimeException(
                        "GF2nPolynomialElement.reduce: the field"
                            + " polynomial is not a trinomial");
                }
                if (((mDegree - tc) <= 32) // do we have to use slow
                    // bitwise reduction ?
                    || (polynomial.getLength() > (mDegree << 1)))
                {
                    reduceTrinomialBitwise(tc);
                    return;
                }
                polynomial.reduceTrinomial(mDegree, tc);
                return;
            }
            else if (((GF2nPolynomialField)mField).isPentanomial())
            { // fieldpolynomial
                // is
                // pentanomial
                int[] pc;
                try
                {
                    pc = ((GF2nPolynomialField)mField).getPc();
                }
                catch (RuntimeException NATExc)
                {
                    throw new RuntimeException(
                        "GF2nPolynomialElement.reduce: the field"
                            + " polynomial is not a pentanomial");
                }
                if (((mDegree - pc[2]) <= 32) // do we have to use slow
                    // bitwise reduction ?
                    || (polynomial.getLength() > (mDegree << 1)))
                {
                    reducePentanomialBitwise(pc);
                    return;
                }
                polynomial.reducePentanomial(mDegree, pc);
                return;
            }
            else
            { // fieldpolynomial is something else
                polynomial = polynomial.remainder(mField.getFieldPolynomial());
                polynomial.expandN(mDegree);
                return;
            }
        }
        if (polynomial.getLength() < mDegree)
        {
            polynomial.expandN(mDegree);
        }
    }

    /**
     * Reduce this GF2nPolynomialElement using the trinomial x^n + x^tc + 1 as
     * fieldpolynomial. The coefficients are reduced bit by bit.
     */
    private void reduceTrinomialBitwise(int tc)
    {
        int i;
        int k = mDegree - tc;
        for (i = polynomial.getLength() - 1; i >= mDegree; i--)
        {
            if (polynomial.testBit(i))
            {

                polynomial.xorBit(i);
                polynomial.xorBit(i - k);
                polynomial.xorBit(i - mDegree);

            }
        }
        polynomial.reduceN();
        polynomial.expandN(mDegree);
    }

    /**
     * Reduce this GF2nPolynomialElement using the pentanomial x^n + x^pc[2] +
     * x^pc[1] + x^pc[0] + 1 as fieldpolynomial. The coefficients are reduced
     * bit by bit.
     */
    private void reducePentanomialBitwise(int[] pc)
    {
        int i;
        int k = mDegree - pc[2];
        int l = mDegree - pc[1];
        int m = mDegree - pc[0];
        for (i = polynomial.getLength() - 1; i >= mDegree; i--)
        {
            if (polynomial.testBit(i))
            {
                polynomial.xorBit(i);
                polynomial.xorBit(i - k);
                polynomial.xorBit(i - l);
                polynomial.xorBit(i - m);
                polynomial.xorBit(i - mDegree);

            }
        }
        polynomial.reduceN();
        polynomial.expandN(mDegree);
    }

    // /////////////////////////////////////////////////////////////////////
    // conversion
    // /////////////////////////////////////////////////////////////////////

    /**
     * Returns a string representing this Bitstrings value using hexadecimal
     * radix in MSB-first order.
     *
     * @return a String representing this Bitstrings value.
     */
    public String toString()
    {
        return polynomial.toString(16);
    }

    /**
     * Returns a string representing this Bitstrings value using hexadecimal or
     * binary radix in MSB-first order.
     *
     * @param radix the radix to use (2 or 16, otherwise 2 is used)
     * @return a String representing this Bitstrings value.
     */
    public String toString(int radix)
    {
        return polynomial.toString(radix);
    }

    /**
     * Converts this GF2nPolynomialElement to a byte[] according to 1363.
     *
     * @return a byte[] representing the value of this GF2nPolynomialElement
     * @see "P1363 5.5.2 p22f BS2OSP, FE2OSP"
     */
    public byte[] toByteArray()
    {
        return polynomial.toByteArray();
    }

    /**
     * Converts this GF2nPolynomialElement to an integer according to 1363.
     *
     * @return a BigInteger representing the value of this
     *         GF2nPolynomialElement
     * @see "P1363 5.5.1 p22 BS2IP"
     */
    public BigInteger toFlexiBigInt()
    {
        return polynomial.toFlexiBigInt();
    }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy