All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.clarifai.grpc.api.And Maven / Gradle / Ivy

// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: proto/clarifai/api/resources.proto

package com.clarifai.grpc.api;

/**
 * 
 * This is the common building block of a query which is a sequence of And messages ANDed together.
 * Note that some fields are used too RANK results (affect the scores) and some are used to FILTER
 * results (unordered subset of your app's contents). In general, FILTER operations are more
 * efficient queries at scale and when combined with RANK operations can speed up search performance
 * as you effectively operate on a smaller sub-set of your entire app.
 * 
* * Protobuf type {@code clarifai.api.And} */ public final class And extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:clarifai.api.And) AndOrBuilder { private static final long serialVersionUID = 0L; // Use And.newBuilder() to construct. private And(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private And() { } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new And(); } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private And( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { this(); if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { com.clarifai.grpc.api.Input.Builder subBuilder = null; if (input_ != null) { subBuilder = input_.toBuilder(); } input_ = input.readMessage(com.clarifai.grpc.api.Input.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(input_); input_ = subBuilder.buildPartial(); } break; } case 18: { com.clarifai.grpc.api.Output.Builder subBuilder = null; if (output_ != null) { subBuilder = output_.toBuilder(); } output_ = input.readMessage(com.clarifai.grpc.api.Output.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(output_); output_ = subBuilder.buildPartial(); } break; } case 24: { negate_ = input.readBool(); break; } case 34: { com.clarifai.grpc.api.Annotation.Builder subBuilder = null; if (annotation_ != null) { subBuilder = annotation_.toBuilder(); } annotation_ = input.readMessage(com.clarifai.grpc.api.Annotation.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(annotation_); annotation_ = subBuilder.buildPartial(); } break; } default: { if (!parseUnknownField( input, unknownFields, extensionRegistry, tag)) { done = true; } break; } } } } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(this); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(this); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException( e).setUnfinishedMessage(this); } finally { this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.clarifai.grpc.api.Resources.internal_static_clarifai_api_And_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.clarifai.grpc.api.Resources.internal_static_clarifai_api_And_fieldAccessorTable .ensureFieldAccessorsInitialized( com.clarifai.grpc.api.And.class, com.clarifai.grpc.api.And.Builder.class); } public static final int INPUT_FIELD_NUMBER = 1; private com.clarifai.grpc.api.Input input_; /** *
   * FILTER by input.data... information.
   * This can include human provided concepts, geo location info, metadata, etc.
   * This is effectively searching over only the trusted annotation attached to an input in your
   * app. To search by more specific annotation fields use the Annotation object here.
   * ########## Supported fields ##########
   *  - data.concepts[].id
   *  - data.concepts[].name
   *  - data.concepts[].value
   *  - data.geo.geo_box[].geo_point.latitude
   *  - data.geo.geo_box[].geo_point.longitude
   *  - data.geo.geo_limit.type
   *  - data.geo.geo_limit.value
   *  - data.geo.geo_point.latitude
   *  - data.geo.geo_point.longitude
   *  - data.image.url
   *  - data.metadata - allow search with empty metadata
   *    note that searching by empty metadata will actually not influence the search results.
   *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
   *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
   *  - dataset_ids[] - filter by dataset IDs
   *  - id - filter by input ID
   *  - status.code - filter by input status
   * 
* * .clarifai.api.Input input = 1; * @return Whether the input field is set. */ @java.lang.Override public boolean hasInput() { return input_ != null; } /** *
   * FILTER by input.data... information.
   * This can include human provided concepts, geo location info, metadata, etc.
   * This is effectively searching over only the trusted annotation attached to an input in your
   * app. To search by more specific annotation fields use the Annotation object here.
   * ########## Supported fields ##########
   *  - data.concepts[].id
   *  - data.concepts[].name
   *  - data.concepts[].value
   *  - data.geo.geo_box[].geo_point.latitude
   *  - data.geo.geo_box[].geo_point.longitude
   *  - data.geo.geo_limit.type
   *  - data.geo.geo_limit.value
   *  - data.geo.geo_point.latitude
   *  - data.geo.geo_point.longitude
   *  - data.image.url
   *  - data.metadata - allow search with empty metadata
   *    note that searching by empty metadata will actually not influence the search results.
   *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
   *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
   *  - dataset_ids[] - filter by dataset IDs
   *  - id - filter by input ID
   *  - status.code - filter by input status
   * 
* * .clarifai.api.Input input = 1; * @return The input. */ @java.lang.Override public com.clarifai.grpc.api.Input getInput() { return input_ == null ? com.clarifai.grpc.api.Input.getDefaultInstance() : input_; } /** *
   * FILTER by input.data... information.
   * This can include human provided concepts, geo location info, metadata, etc.
   * This is effectively searching over only the trusted annotation attached to an input in your
   * app. To search by more specific annotation fields use the Annotation object here.
   * ########## Supported fields ##########
   *  - data.concepts[].id
   *  - data.concepts[].name
   *  - data.concepts[].value
   *  - data.geo.geo_box[].geo_point.latitude
   *  - data.geo.geo_box[].geo_point.longitude
   *  - data.geo.geo_limit.type
   *  - data.geo.geo_limit.value
   *  - data.geo.geo_point.latitude
   *  - data.geo.geo_point.longitude
   *  - data.image.url
   *  - data.metadata - allow search with empty metadata
   *    note that searching by empty metadata will actually not influence the search results.
   *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
   *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
   *  - dataset_ids[] - filter by dataset IDs
   *  - id - filter by input ID
   *  - status.code - filter by input status
   * 
* * .clarifai.api.Input input = 1; */ @java.lang.Override public com.clarifai.grpc.api.InputOrBuilder getInputOrBuilder() { return getInput(); } public static final int OUTPUT_FIELD_NUMBER = 2; private com.clarifai.grpc.api.Output output_; /** *
   * RANK based predicted outputs from models such as custom trained models, pre-trained models,
   * etc. This is also where you enter the image url for a visual search because what we're asking
   * the system to do is find output embedding most visually similar to the provided input (that
   * input being in And.output.input.data.image.url for example). This will return the Hits
   * sorted by visual similarity (1.0 being very similar or exact match and 0.0 being very
   * dissimlar). For a search by Output concept, this means we're asking the system to rank
   * the Hits by confidence of our model's predicted Outputs. So for example if the model
   * predicts an image is 0.95 likely there is a "dog" present, that should related directly
   * to the score returned if you search for Output concept "dog" in your query. This provides
   * a natural ranking to search results based on confidence of predictions from the models and
   * is used when ANDing multiple of these types of RANK by Output queries together as well.
   * ########## Supported fields ##########
   *  - data.clusters[].id
   *  - data.concepts[].id
   *  - data.concepts[].name
   *  - data.concepts[].value
   *  - input.data.image - empty image is required when searching by input ID
   *  - input.data.image.base64[]
   *  - input.data.image.url
   *  - input.id
   * 
* * .clarifai.api.Output output = 2; * @return Whether the output field is set. */ @java.lang.Override public boolean hasOutput() { return output_ != null; } /** *
   * RANK based predicted outputs from models such as custom trained models, pre-trained models,
   * etc. This is also where you enter the image url for a visual search because what we're asking
   * the system to do is find output embedding most visually similar to the provided input (that
   * input being in And.output.input.data.image.url for example). This will return the Hits
   * sorted by visual similarity (1.0 being very similar or exact match and 0.0 being very
   * dissimlar). For a search by Output concept, this means we're asking the system to rank
   * the Hits by confidence of our model's predicted Outputs. So for example if the model
   * predicts an image is 0.95 likely there is a "dog" present, that should related directly
   * to the score returned if you search for Output concept "dog" in your query. This provides
   * a natural ranking to search results based on confidence of predictions from the models and
   * is used when ANDing multiple of these types of RANK by Output queries together as well.
   * ########## Supported fields ##########
   *  - data.clusters[].id
   *  - data.concepts[].id
   *  - data.concepts[].name
   *  - data.concepts[].value
   *  - input.data.image - empty image is required when searching by input ID
   *  - input.data.image.base64[]
   *  - input.data.image.url
   *  - input.id
   * 
* * .clarifai.api.Output output = 2; * @return The output. */ @java.lang.Override public com.clarifai.grpc.api.Output getOutput() { return output_ == null ? com.clarifai.grpc.api.Output.getDefaultInstance() : output_; } /** *
   * RANK based predicted outputs from models such as custom trained models, pre-trained models,
   * etc. This is also where you enter the image url for a visual search because what we're asking
   * the system to do is find output embedding most visually similar to the provided input (that
   * input being in And.output.input.data.image.url for example). This will return the Hits
   * sorted by visual similarity (1.0 being very similar or exact match and 0.0 being very
   * dissimlar). For a search by Output concept, this means we're asking the system to rank
   * the Hits by confidence of our model's predicted Outputs. So for example if the model
   * predicts an image is 0.95 likely there is a "dog" present, that should related directly
   * to the score returned if you search for Output concept "dog" in your query. This provides
   * a natural ranking to search results based on confidence of predictions from the models and
   * is used when ANDing multiple of these types of RANK by Output queries together as well.
   * ########## Supported fields ##########
   *  - data.clusters[].id
   *  - data.concepts[].id
   *  - data.concepts[].name
   *  - data.concepts[].value
   *  - input.data.image - empty image is required when searching by input ID
   *  - input.data.image.base64[]
   *  - input.data.image.url
   *  - input.id
   * 
* * .clarifai.api.Output output = 2; */ @java.lang.Override public com.clarifai.grpc.api.OutputOrBuilder getOutputOrBuilder() { return getOutput(); } public static final int NEGATE_FIELD_NUMBER = 3; private boolean negate_; /** *
   * If True then this will flip the meaning of this part of the
   * query. This allow for queries such as dog AND ! metadata=={"blah":"value"}
   * 
* * bool negate = 3; * @return The negate. */ @java.lang.Override public boolean getNegate() { return negate_; } public static final int ANNOTATION_FIELD_NUMBER = 4; private com.clarifai.grpc.api.Annotation annotation_; /** *
   * FILTER by annotation information. This is more flexible than just filtering by
   * Input information because in the general case each input can have several annotations.
   * Some example use cases for filtering by annotations:
   * 1) find all the inputs annotated "dog" by worker_id = "XYZ"
   * 2) find all the annotations associated with embed_model_version_id = "123"
   * 3) find all the annotations that are trusted, etc.
   * Since all the annotations under the hood are joined to the embedding model's annotation
   * using worker_id's of other models like cluster models or concept models should be
   * combinable with queries like visual search (a query with Output filled in).
   * ########## Supported fields ##########
   *  - annotation_info - allows searching by empty annotation info
   *    note that searching by empty annotation info will actually not influence the search results.
   *    however, in order to be user-friendly, we are still supporting searching by empty annotation info.
   *  - annotation_info.fields - filter by annotation info
   *  - data.concepts[].id
   *  - data.concepts[].name
   *  - data.concepts[].value
   *  - data.geo.geo_box[].geo_point.latitude
   *  - data.geo.geo_box[].geo_point.longitude
   *  - data.geo.geo_limit.type
   *  - data.geo.geo_limit.value
   *  - data.geo.geo_point.latitude
   *  - data.geo.geo_point.longitude
   *  - data.image.url
   *  - data.metadata - allow search with empty metadata
   *    note that searching by empty metadata will actually not influence the search results.
   *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
   *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
   *  - input_id
   *  - input_level
   *  - model_version_id
   *  - status.code
   *  - task_id
   *  - trusted
   *  - user_id
   * 
* * .clarifai.api.Annotation annotation = 4; * @return Whether the annotation field is set. */ @java.lang.Override public boolean hasAnnotation() { return annotation_ != null; } /** *
   * FILTER by annotation information. This is more flexible than just filtering by
   * Input information because in the general case each input can have several annotations.
   * Some example use cases for filtering by annotations:
   * 1) find all the inputs annotated "dog" by worker_id = "XYZ"
   * 2) find all the annotations associated with embed_model_version_id = "123"
   * 3) find all the annotations that are trusted, etc.
   * Since all the annotations under the hood are joined to the embedding model's annotation
   * using worker_id's of other models like cluster models or concept models should be
   * combinable with queries like visual search (a query with Output filled in).
   * ########## Supported fields ##########
   *  - annotation_info - allows searching by empty annotation info
   *    note that searching by empty annotation info will actually not influence the search results.
   *    however, in order to be user-friendly, we are still supporting searching by empty annotation info.
   *  - annotation_info.fields - filter by annotation info
   *  - data.concepts[].id
   *  - data.concepts[].name
   *  - data.concepts[].value
   *  - data.geo.geo_box[].geo_point.latitude
   *  - data.geo.geo_box[].geo_point.longitude
   *  - data.geo.geo_limit.type
   *  - data.geo.geo_limit.value
   *  - data.geo.geo_point.latitude
   *  - data.geo.geo_point.longitude
   *  - data.image.url
   *  - data.metadata - allow search with empty metadata
   *    note that searching by empty metadata will actually not influence the search results.
   *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
   *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
   *  - input_id
   *  - input_level
   *  - model_version_id
   *  - status.code
   *  - task_id
   *  - trusted
   *  - user_id
   * 
* * .clarifai.api.Annotation annotation = 4; * @return The annotation. */ @java.lang.Override public com.clarifai.grpc.api.Annotation getAnnotation() { return annotation_ == null ? com.clarifai.grpc.api.Annotation.getDefaultInstance() : annotation_; } /** *
   * FILTER by annotation information. This is more flexible than just filtering by
   * Input information because in the general case each input can have several annotations.
   * Some example use cases for filtering by annotations:
   * 1) find all the inputs annotated "dog" by worker_id = "XYZ"
   * 2) find all the annotations associated with embed_model_version_id = "123"
   * 3) find all the annotations that are trusted, etc.
   * Since all the annotations under the hood are joined to the embedding model's annotation
   * using worker_id's of other models like cluster models or concept models should be
   * combinable with queries like visual search (a query with Output filled in).
   * ########## Supported fields ##########
   *  - annotation_info - allows searching by empty annotation info
   *    note that searching by empty annotation info will actually not influence the search results.
   *    however, in order to be user-friendly, we are still supporting searching by empty annotation info.
   *  - annotation_info.fields - filter by annotation info
   *  - data.concepts[].id
   *  - data.concepts[].name
   *  - data.concepts[].value
   *  - data.geo.geo_box[].geo_point.latitude
   *  - data.geo.geo_box[].geo_point.longitude
   *  - data.geo.geo_limit.type
   *  - data.geo.geo_limit.value
   *  - data.geo.geo_point.latitude
   *  - data.geo.geo_point.longitude
   *  - data.image.url
   *  - data.metadata - allow search with empty metadata
   *    note that searching by empty metadata will actually not influence the search results.
   *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
   *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
   *  - input_id
   *  - input_level
   *  - model_version_id
   *  - status.code
   *  - task_id
   *  - trusted
   *  - user_id
   * 
* * .clarifai.api.Annotation annotation = 4; */ @java.lang.Override public com.clarifai.grpc.api.AnnotationOrBuilder getAnnotationOrBuilder() { return getAnnotation(); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (input_ != null) { output.writeMessage(1, getInput()); } if (output_ != null) { output.writeMessage(2, getOutput()); } if (negate_ != false) { output.writeBool(3, negate_); } if (annotation_ != null) { output.writeMessage(4, getAnnotation()); } unknownFields.writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (input_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(1, getInput()); } if (output_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(2, getOutput()); } if (negate_ != false) { size += com.google.protobuf.CodedOutputStream .computeBoolSize(3, negate_); } if (annotation_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(4, getAnnotation()); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.clarifai.grpc.api.And)) { return super.equals(obj); } com.clarifai.grpc.api.And other = (com.clarifai.grpc.api.And) obj; if (hasInput() != other.hasInput()) return false; if (hasInput()) { if (!getInput() .equals(other.getInput())) return false; } if (hasOutput() != other.hasOutput()) return false; if (hasOutput()) { if (!getOutput() .equals(other.getOutput())) return false; } if (getNegate() != other.getNegate()) return false; if (hasAnnotation() != other.hasAnnotation()) return false; if (hasAnnotation()) { if (!getAnnotation() .equals(other.getAnnotation())) return false; } if (!unknownFields.equals(other.unknownFields)) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasInput()) { hash = (37 * hash) + INPUT_FIELD_NUMBER; hash = (53 * hash) + getInput().hashCode(); } if (hasOutput()) { hash = (37 * hash) + OUTPUT_FIELD_NUMBER; hash = (53 * hash) + getOutput().hashCode(); } hash = (37 * hash) + NEGATE_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getNegate()); if (hasAnnotation()) { hash = (37 * hash) + ANNOTATION_FIELD_NUMBER; hash = (53 * hash) + getAnnotation().hashCode(); } hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static com.clarifai.grpc.api.And parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.clarifai.grpc.api.And parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.clarifai.grpc.api.And parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.clarifai.grpc.api.And parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.clarifai.grpc.api.And parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.clarifai.grpc.api.And parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.clarifai.grpc.api.And parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static com.clarifai.grpc.api.And parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static com.clarifai.grpc.api.And parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static com.clarifai.grpc.api.And parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static com.clarifai.grpc.api.And parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static com.clarifai.grpc.api.And parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(com.clarifai.grpc.api.And prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
   * This is the common building block of a query which is a sequence of And messages ANDed together.
   * Note that some fields are used too RANK results (affect the scores) and some are used to FILTER
   * results (unordered subset of your app's contents). In general, FILTER operations are more
   * efficient queries at scale and when combined with RANK operations can speed up search performance
   * as you effectively operate on a smaller sub-set of your entire app.
   * 
* * Protobuf type {@code clarifai.api.And} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:clarifai.api.And) com.clarifai.grpc.api.AndOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.clarifai.grpc.api.Resources.internal_static_clarifai_api_And_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.clarifai.grpc.api.Resources.internal_static_clarifai_api_And_fieldAccessorTable .ensureFieldAccessorsInitialized( com.clarifai.grpc.api.And.class, com.clarifai.grpc.api.And.Builder.class); } // Construct using com.clarifai.grpc.api.And.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { } } @java.lang.Override public Builder clear() { super.clear(); if (inputBuilder_ == null) { input_ = null; } else { input_ = null; inputBuilder_ = null; } if (outputBuilder_ == null) { output_ = null; } else { output_ = null; outputBuilder_ = null; } negate_ = false; if (annotationBuilder_ == null) { annotation_ = null; } else { annotation_ = null; annotationBuilder_ = null; } return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.clarifai.grpc.api.Resources.internal_static_clarifai_api_And_descriptor; } @java.lang.Override public com.clarifai.grpc.api.And getDefaultInstanceForType() { return com.clarifai.grpc.api.And.getDefaultInstance(); } @java.lang.Override public com.clarifai.grpc.api.And build() { com.clarifai.grpc.api.And result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.clarifai.grpc.api.And buildPartial() { com.clarifai.grpc.api.And result = new com.clarifai.grpc.api.And(this); if (inputBuilder_ == null) { result.input_ = input_; } else { result.input_ = inputBuilder_.build(); } if (outputBuilder_ == null) { result.output_ = output_; } else { result.output_ = outputBuilder_.build(); } result.negate_ = negate_; if (annotationBuilder_ == null) { result.annotation_ = annotation_; } else { result.annotation_ = annotationBuilder_.build(); } onBuilt(); return result; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.clarifai.grpc.api.And) { return mergeFrom((com.clarifai.grpc.api.And)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(com.clarifai.grpc.api.And other) { if (other == com.clarifai.grpc.api.And.getDefaultInstance()) return this; if (other.hasInput()) { mergeInput(other.getInput()); } if (other.hasOutput()) { mergeOutput(other.getOutput()); } if (other.getNegate() != false) { setNegate(other.getNegate()); } if (other.hasAnnotation()) { mergeAnnotation(other.getAnnotation()); } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { com.clarifai.grpc.api.And parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (com.clarifai.grpc.api.And) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private com.clarifai.grpc.api.Input input_; private com.google.protobuf.SingleFieldBuilderV3< com.clarifai.grpc.api.Input, com.clarifai.grpc.api.Input.Builder, com.clarifai.grpc.api.InputOrBuilder> inputBuilder_; /** *
     * FILTER by input.data... information.
     * This can include human provided concepts, geo location info, metadata, etc.
     * This is effectively searching over only the trusted annotation attached to an input in your
     * app. To search by more specific annotation fields use the Annotation object here.
     * ########## Supported fields ##########
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - data.geo.geo_box[].geo_point.latitude
     *  - data.geo.geo_box[].geo_point.longitude
     *  - data.geo.geo_limit.type
     *  - data.geo.geo_limit.value
     *  - data.geo.geo_point.latitude
     *  - data.geo.geo_point.longitude
     *  - data.image.url
     *  - data.metadata - allow search with empty metadata
     *    note that searching by empty metadata will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
     *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
     *  - dataset_ids[] - filter by dataset IDs
     *  - id - filter by input ID
     *  - status.code - filter by input status
     * 
* * .clarifai.api.Input input = 1; * @return Whether the input field is set. */ public boolean hasInput() { return inputBuilder_ != null || input_ != null; } /** *
     * FILTER by input.data... information.
     * This can include human provided concepts, geo location info, metadata, etc.
     * This is effectively searching over only the trusted annotation attached to an input in your
     * app. To search by more specific annotation fields use the Annotation object here.
     * ########## Supported fields ##########
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - data.geo.geo_box[].geo_point.latitude
     *  - data.geo.geo_box[].geo_point.longitude
     *  - data.geo.geo_limit.type
     *  - data.geo.geo_limit.value
     *  - data.geo.geo_point.latitude
     *  - data.geo.geo_point.longitude
     *  - data.image.url
     *  - data.metadata - allow search with empty metadata
     *    note that searching by empty metadata will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
     *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
     *  - dataset_ids[] - filter by dataset IDs
     *  - id - filter by input ID
     *  - status.code - filter by input status
     * 
* * .clarifai.api.Input input = 1; * @return The input. */ public com.clarifai.grpc.api.Input getInput() { if (inputBuilder_ == null) { return input_ == null ? com.clarifai.grpc.api.Input.getDefaultInstance() : input_; } else { return inputBuilder_.getMessage(); } } /** *
     * FILTER by input.data... information.
     * This can include human provided concepts, geo location info, metadata, etc.
     * This is effectively searching over only the trusted annotation attached to an input in your
     * app. To search by more specific annotation fields use the Annotation object here.
     * ########## Supported fields ##########
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - data.geo.geo_box[].geo_point.latitude
     *  - data.geo.geo_box[].geo_point.longitude
     *  - data.geo.geo_limit.type
     *  - data.geo.geo_limit.value
     *  - data.geo.geo_point.latitude
     *  - data.geo.geo_point.longitude
     *  - data.image.url
     *  - data.metadata - allow search with empty metadata
     *    note that searching by empty metadata will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
     *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
     *  - dataset_ids[] - filter by dataset IDs
     *  - id - filter by input ID
     *  - status.code - filter by input status
     * 
* * .clarifai.api.Input input = 1; */ public Builder setInput(com.clarifai.grpc.api.Input value) { if (inputBuilder_ == null) { if (value == null) { throw new NullPointerException(); } input_ = value; onChanged(); } else { inputBuilder_.setMessage(value); } return this; } /** *
     * FILTER by input.data... information.
     * This can include human provided concepts, geo location info, metadata, etc.
     * This is effectively searching over only the trusted annotation attached to an input in your
     * app. To search by more specific annotation fields use the Annotation object here.
     * ########## Supported fields ##########
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - data.geo.geo_box[].geo_point.latitude
     *  - data.geo.geo_box[].geo_point.longitude
     *  - data.geo.geo_limit.type
     *  - data.geo.geo_limit.value
     *  - data.geo.geo_point.latitude
     *  - data.geo.geo_point.longitude
     *  - data.image.url
     *  - data.metadata - allow search with empty metadata
     *    note that searching by empty metadata will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
     *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
     *  - dataset_ids[] - filter by dataset IDs
     *  - id - filter by input ID
     *  - status.code - filter by input status
     * 
* * .clarifai.api.Input input = 1; */ public Builder setInput( com.clarifai.grpc.api.Input.Builder builderForValue) { if (inputBuilder_ == null) { input_ = builderForValue.build(); onChanged(); } else { inputBuilder_.setMessage(builderForValue.build()); } return this; } /** *
     * FILTER by input.data... information.
     * This can include human provided concepts, geo location info, metadata, etc.
     * This is effectively searching over only the trusted annotation attached to an input in your
     * app. To search by more specific annotation fields use the Annotation object here.
     * ########## Supported fields ##########
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - data.geo.geo_box[].geo_point.latitude
     *  - data.geo.geo_box[].geo_point.longitude
     *  - data.geo.geo_limit.type
     *  - data.geo.geo_limit.value
     *  - data.geo.geo_point.latitude
     *  - data.geo.geo_point.longitude
     *  - data.image.url
     *  - data.metadata - allow search with empty metadata
     *    note that searching by empty metadata will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
     *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
     *  - dataset_ids[] - filter by dataset IDs
     *  - id - filter by input ID
     *  - status.code - filter by input status
     * 
* * .clarifai.api.Input input = 1; */ public Builder mergeInput(com.clarifai.grpc.api.Input value) { if (inputBuilder_ == null) { if (input_ != null) { input_ = com.clarifai.grpc.api.Input.newBuilder(input_).mergeFrom(value).buildPartial(); } else { input_ = value; } onChanged(); } else { inputBuilder_.mergeFrom(value); } return this; } /** *
     * FILTER by input.data... information.
     * This can include human provided concepts, geo location info, metadata, etc.
     * This is effectively searching over only the trusted annotation attached to an input in your
     * app. To search by more specific annotation fields use the Annotation object here.
     * ########## Supported fields ##########
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - data.geo.geo_box[].geo_point.latitude
     *  - data.geo.geo_box[].geo_point.longitude
     *  - data.geo.geo_limit.type
     *  - data.geo.geo_limit.value
     *  - data.geo.geo_point.latitude
     *  - data.geo.geo_point.longitude
     *  - data.image.url
     *  - data.metadata - allow search with empty metadata
     *    note that searching by empty metadata will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
     *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
     *  - dataset_ids[] - filter by dataset IDs
     *  - id - filter by input ID
     *  - status.code - filter by input status
     * 
* * .clarifai.api.Input input = 1; */ public Builder clearInput() { if (inputBuilder_ == null) { input_ = null; onChanged(); } else { input_ = null; inputBuilder_ = null; } return this; } /** *
     * FILTER by input.data... information.
     * This can include human provided concepts, geo location info, metadata, etc.
     * This is effectively searching over only the trusted annotation attached to an input in your
     * app. To search by more specific annotation fields use the Annotation object here.
     * ########## Supported fields ##########
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - data.geo.geo_box[].geo_point.latitude
     *  - data.geo.geo_box[].geo_point.longitude
     *  - data.geo.geo_limit.type
     *  - data.geo.geo_limit.value
     *  - data.geo.geo_point.latitude
     *  - data.geo.geo_point.longitude
     *  - data.image.url
     *  - data.metadata - allow search with empty metadata
     *    note that searching by empty metadata will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
     *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
     *  - dataset_ids[] - filter by dataset IDs
     *  - id - filter by input ID
     *  - status.code - filter by input status
     * 
* * .clarifai.api.Input input = 1; */ public com.clarifai.grpc.api.Input.Builder getInputBuilder() { onChanged(); return getInputFieldBuilder().getBuilder(); } /** *
     * FILTER by input.data... information.
     * This can include human provided concepts, geo location info, metadata, etc.
     * This is effectively searching over only the trusted annotation attached to an input in your
     * app. To search by more specific annotation fields use the Annotation object here.
     * ########## Supported fields ##########
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - data.geo.geo_box[].geo_point.latitude
     *  - data.geo.geo_box[].geo_point.longitude
     *  - data.geo.geo_limit.type
     *  - data.geo.geo_limit.value
     *  - data.geo.geo_point.latitude
     *  - data.geo.geo_point.longitude
     *  - data.image.url
     *  - data.metadata - allow search with empty metadata
     *    note that searching by empty metadata will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
     *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
     *  - dataset_ids[] - filter by dataset IDs
     *  - id - filter by input ID
     *  - status.code - filter by input status
     * 
* * .clarifai.api.Input input = 1; */ public com.clarifai.grpc.api.InputOrBuilder getInputOrBuilder() { if (inputBuilder_ != null) { return inputBuilder_.getMessageOrBuilder(); } else { return input_ == null ? com.clarifai.grpc.api.Input.getDefaultInstance() : input_; } } /** *
     * FILTER by input.data... information.
     * This can include human provided concepts, geo location info, metadata, etc.
     * This is effectively searching over only the trusted annotation attached to an input in your
     * app. To search by more specific annotation fields use the Annotation object here.
     * ########## Supported fields ##########
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - data.geo.geo_box[].geo_point.latitude
     *  - data.geo.geo_box[].geo_point.longitude
     *  - data.geo.geo_limit.type
     *  - data.geo.geo_limit.value
     *  - data.geo.geo_point.latitude
     *  - data.geo.geo_point.longitude
     *  - data.image.url
     *  - data.metadata - allow search with empty metadata
     *    note that searching by empty metadata will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
     *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
     *  - dataset_ids[] - filter by dataset IDs
     *  - id - filter by input ID
     *  - status.code - filter by input status
     * 
* * .clarifai.api.Input input = 1; */ private com.google.protobuf.SingleFieldBuilderV3< com.clarifai.grpc.api.Input, com.clarifai.grpc.api.Input.Builder, com.clarifai.grpc.api.InputOrBuilder> getInputFieldBuilder() { if (inputBuilder_ == null) { inputBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.clarifai.grpc.api.Input, com.clarifai.grpc.api.Input.Builder, com.clarifai.grpc.api.InputOrBuilder>( getInput(), getParentForChildren(), isClean()); input_ = null; } return inputBuilder_; } private com.clarifai.grpc.api.Output output_; private com.google.protobuf.SingleFieldBuilderV3< com.clarifai.grpc.api.Output, com.clarifai.grpc.api.Output.Builder, com.clarifai.grpc.api.OutputOrBuilder> outputBuilder_; /** *
     * RANK based predicted outputs from models such as custom trained models, pre-trained models,
     * etc. This is also where you enter the image url for a visual search because what we're asking
     * the system to do is find output embedding most visually similar to the provided input (that
     * input being in And.output.input.data.image.url for example). This will return the Hits
     * sorted by visual similarity (1.0 being very similar or exact match and 0.0 being very
     * dissimlar). For a search by Output concept, this means we're asking the system to rank
     * the Hits by confidence of our model's predicted Outputs. So for example if the model
     * predicts an image is 0.95 likely there is a "dog" present, that should related directly
     * to the score returned if you search for Output concept "dog" in your query. This provides
     * a natural ranking to search results based on confidence of predictions from the models and
     * is used when ANDing multiple of these types of RANK by Output queries together as well.
     * ########## Supported fields ##########
     *  - data.clusters[].id
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - input.data.image - empty image is required when searching by input ID
     *  - input.data.image.base64[]
     *  - input.data.image.url
     *  - input.id
     * 
* * .clarifai.api.Output output = 2; * @return Whether the output field is set. */ public boolean hasOutput() { return outputBuilder_ != null || output_ != null; } /** *
     * RANK based predicted outputs from models such as custom trained models, pre-trained models,
     * etc. This is also where you enter the image url for a visual search because what we're asking
     * the system to do is find output embedding most visually similar to the provided input (that
     * input being in And.output.input.data.image.url for example). This will return the Hits
     * sorted by visual similarity (1.0 being very similar or exact match and 0.0 being very
     * dissimlar). For a search by Output concept, this means we're asking the system to rank
     * the Hits by confidence of our model's predicted Outputs. So for example if the model
     * predicts an image is 0.95 likely there is a "dog" present, that should related directly
     * to the score returned if you search for Output concept "dog" in your query. This provides
     * a natural ranking to search results based on confidence of predictions from the models and
     * is used when ANDing multiple of these types of RANK by Output queries together as well.
     * ########## Supported fields ##########
     *  - data.clusters[].id
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - input.data.image - empty image is required when searching by input ID
     *  - input.data.image.base64[]
     *  - input.data.image.url
     *  - input.id
     * 
* * .clarifai.api.Output output = 2; * @return The output. */ public com.clarifai.grpc.api.Output getOutput() { if (outputBuilder_ == null) { return output_ == null ? com.clarifai.grpc.api.Output.getDefaultInstance() : output_; } else { return outputBuilder_.getMessage(); } } /** *
     * RANK based predicted outputs from models such as custom trained models, pre-trained models,
     * etc. This is also where you enter the image url for a visual search because what we're asking
     * the system to do is find output embedding most visually similar to the provided input (that
     * input being in And.output.input.data.image.url for example). This will return the Hits
     * sorted by visual similarity (1.0 being very similar or exact match and 0.0 being very
     * dissimlar). For a search by Output concept, this means we're asking the system to rank
     * the Hits by confidence of our model's predicted Outputs. So for example if the model
     * predicts an image is 0.95 likely there is a "dog" present, that should related directly
     * to the score returned if you search for Output concept "dog" in your query. This provides
     * a natural ranking to search results based on confidence of predictions from the models and
     * is used when ANDing multiple of these types of RANK by Output queries together as well.
     * ########## Supported fields ##########
     *  - data.clusters[].id
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - input.data.image - empty image is required when searching by input ID
     *  - input.data.image.base64[]
     *  - input.data.image.url
     *  - input.id
     * 
* * .clarifai.api.Output output = 2; */ public Builder setOutput(com.clarifai.grpc.api.Output value) { if (outputBuilder_ == null) { if (value == null) { throw new NullPointerException(); } output_ = value; onChanged(); } else { outputBuilder_.setMessage(value); } return this; } /** *
     * RANK based predicted outputs from models such as custom trained models, pre-trained models,
     * etc. This is also where you enter the image url for a visual search because what we're asking
     * the system to do is find output embedding most visually similar to the provided input (that
     * input being in And.output.input.data.image.url for example). This will return the Hits
     * sorted by visual similarity (1.0 being very similar or exact match and 0.0 being very
     * dissimlar). For a search by Output concept, this means we're asking the system to rank
     * the Hits by confidence of our model's predicted Outputs. So for example if the model
     * predicts an image is 0.95 likely there is a "dog" present, that should related directly
     * to the score returned if you search for Output concept "dog" in your query. This provides
     * a natural ranking to search results based on confidence of predictions from the models and
     * is used when ANDing multiple of these types of RANK by Output queries together as well.
     * ########## Supported fields ##########
     *  - data.clusters[].id
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - input.data.image - empty image is required when searching by input ID
     *  - input.data.image.base64[]
     *  - input.data.image.url
     *  - input.id
     * 
* * .clarifai.api.Output output = 2; */ public Builder setOutput( com.clarifai.grpc.api.Output.Builder builderForValue) { if (outputBuilder_ == null) { output_ = builderForValue.build(); onChanged(); } else { outputBuilder_.setMessage(builderForValue.build()); } return this; } /** *
     * RANK based predicted outputs from models such as custom trained models, pre-trained models,
     * etc. This is also where you enter the image url for a visual search because what we're asking
     * the system to do is find output embedding most visually similar to the provided input (that
     * input being in And.output.input.data.image.url for example). This will return the Hits
     * sorted by visual similarity (1.0 being very similar or exact match and 0.0 being very
     * dissimlar). For a search by Output concept, this means we're asking the system to rank
     * the Hits by confidence of our model's predicted Outputs. So for example if the model
     * predicts an image is 0.95 likely there is a "dog" present, that should related directly
     * to the score returned if you search for Output concept "dog" in your query. This provides
     * a natural ranking to search results based on confidence of predictions from the models and
     * is used when ANDing multiple of these types of RANK by Output queries together as well.
     * ########## Supported fields ##########
     *  - data.clusters[].id
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - input.data.image - empty image is required when searching by input ID
     *  - input.data.image.base64[]
     *  - input.data.image.url
     *  - input.id
     * 
* * .clarifai.api.Output output = 2; */ public Builder mergeOutput(com.clarifai.grpc.api.Output value) { if (outputBuilder_ == null) { if (output_ != null) { output_ = com.clarifai.grpc.api.Output.newBuilder(output_).mergeFrom(value).buildPartial(); } else { output_ = value; } onChanged(); } else { outputBuilder_.mergeFrom(value); } return this; } /** *
     * RANK based predicted outputs from models such as custom trained models, pre-trained models,
     * etc. This is also where you enter the image url for a visual search because what we're asking
     * the system to do is find output embedding most visually similar to the provided input (that
     * input being in And.output.input.data.image.url for example). This will return the Hits
     * sorted by visual similarity (1.0 being very similar or exact match and 0.0 being very
     * dissimlar). For a search by Output concept, this means we're asking the system to rank
     * the Hits by confidence of our model's predicted Outputs. So for example if the model
     * predicts an image is 0.95 likely there is a "dog" present, that should related directly
     * to the score returned if you search for Output concept "dog" in your query. This provides
     * a natural ranking to search results based on confidence of predictions from the models and
     * is used when ANDing multiple of these types of RANK by Output queries together as well.
     * ########## Supported fields ##########
     *  - data.clusters[].id
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - input.data.image - empty image is required when searching by input ID
     *  - input.data.image.base64[]
     *  - input.data.image.url
     *  - input.id
     * 
* * .clarifai.api.Output output = 2; */ public Builder clearOutput() { if (outputBuilder_ == null) { output_ = null; onChanged(); } else { output_ = null; outputBuilder_ = null; } return this; } /** *
     * RANK based predicted outputs from models such as custom trained models, pre-trained models,
     * etc. This is also where you enter the image url for a visual search because what we're asking
     * the system to do is find output embedding most visually similar to the provided input (that
     * input being in And.output.input.data.image.url for example). This will return the Hits
     * sorted by visual similarity (1.0 being very similar or exact match and 0.0 being very
     * dissimlar). For a search by Output concept, this means we're asking the system to rank
     * the Hits by confidence of our model's predicted Outputs. So for example if the model
     * predicts an image is 0.95 likely there is a "dog" present, that should related directly
     * to the score returned if you search for Output concept "dog" in your query. This provides
     * a natural ranking to search results based on confidence of predictions from the models and
     * is used when ANDing multiple of these types of RANK by Output queries together as well.
     * ########## Supported fields ##########
     *  - data.clusters[].id
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - input.data.image - empty image is required when searching by input ID
     *  - input.data.image.base64[]
     *  - input.data.image.url
     *  - input.id
     * 
* * .clarifai.api.Output output = 2; */ public com.clarifai.grpc.api.Output.Builder getOutputBuilder() { onChanged(); return getOutputFieldBuilder().getBuilder(); } /** *
     * RANK based predicted outputs from models such as custom trained models, pre-trained models,
     * etc. This is also where you enter the image url for a visual search because what we're asking
     * the system to do is find output embedding most visually similar to the provided input (that
     * input being in And.output.input.data.image.url for example). This will return the Hits
     * sorted by visual similarity (1.0 being very similar or exact match and 0.0 being very
     * dissimlar). For a search by Output concept, this means we're asking the system to rank
     * the Hits by confidence of our model's predicted Outputs. So for example if the model
     * predicts an image is 0.95 likely there is a "dog" present, that should related directly
     * to the score returned if you search for Output concept "dog" in your query. This provides
     * a natural ranking to search results based on confidence of predictions from the models and
     * is used when ANDing multiple of these types of RANK by Output queries together as well.
     * ########## Supported fields ##########
     *  - data.clusters[].id
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - input.data.image - empty image is required when searching by input ID
     *  - input.data.image.base64[]
     *  - input.data.image.url
     *  - input.id
     * 
* * .clarifai.api.Output output = 2; */ public com.clarifai.grpc.api.OutputOrBuilder getOutputOrBuilder() { if (outputBuilder_ != null) { return outputBuilder_.getMessageOrBuilder(); } else { return output_ == null ? com.clarifai.grpc.api.Output.getDefaultInstance() : output_; } } /** *
     * RANK based predicted outputs from models such as custom trained models, pre-trained models,
     * etc. This is also where you enter the image url for a visual search because what we're asking
     * the system to do is find output embedding most visually similar to the provided input (that
     * input being in And.output.input.data.image.url for example). This will return the Hits
     * sorted by visual similarity (1.0 being very similar or exact match and 0.0 being very
     * dissimlar). For a search by Output concept, this means we're asking the system to rank
     * the Hits by confidence of our model's predicted Outputs. So for example if the model
     * predicts an image is 0.95 likely there is a "dog" present, that should related directly
     * to the score returned if you search for Output concept "dog" in your query. This provides
     * a natural ranking to search results based on confidence of predictions from the models and
     * is used when ANDing multiple of these types of RANK by Output queries together as well.
     * ########## Supported fields ##########
     *  - data.clusters[].id
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - input.data.image - empty image is required when searching by input ID
     *  - input.data.image.base64[]
     *  - input.data.image.url
     *  - input.id
     * 
* * .clarifai.api.Output output = 2; */ private com.google.protobuf.SingleFieldBuilderV3< com.clarifai.grpc.api.Output, com.clarifai.grpc.api.Output.Builder, com.clarifai.grpc.api.OutputOrBuilder> getOutputFieldBuilder() { if (outputBuilder_ == null) { outputBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.clarifai.grpc.api.Output, com.clarifai.grpc.api.Output.Builder, com.clarifai.grpc.api.OutputOrBuilder>( getOutput(), getParentForChildren(), isClean()); output_ = null; } return outputBuilder_; } private boolean negate_ ; /** *
     * If True then this will flip the meaning of this part of the
     * query. This allow for queries such as dog AND ! metadata=={"blah":"value"}
     * 
* * bool negate = 3; * @return The negate. */ @java.lang.Override public boolean getNegate() { return negate_; } /** *
     * If True then this will flip the meaning of this part of the
     * query. This allow for queries such as dog AND ! metadata=={"blah":"value"}
     * 
* * bool negate = 3; * @param value The negate to set. * @return This builder for chaining. */ public Builder setNegate(boolean value) { negate_ = value; onChanged(); return this; } /** *
     * If True then this will flip the meaning of this part of the
     * query. This allow for queries such as dog AND ! metadata=={"blah":"value"}
     * 
* * bool negate = 3; * @return This builder for chaining. */ public Builder clearNegate() { negate_ = false; onChanged(); return this; } private com.clarifai.grpc.api.Annotation annotation_; private com.google.protobuf.SingleFieldBuilderV3< com.clarifai.grpc.api.Annotation, com.clarifai.grpc.api.Annotation.Builder, com.clarifai.grpc.api.AnnotationOrBuilder> annotationBuilder_; /** *
     * FILTER by annotation information. This is more flexible than just filtering by
     * Input information because in the general case each input can have several annotations.
     * Some example use cases for filtering by annotations:
     * 1) find all the inputs annotated "dog" by worker_id = "XYZ"
     * 2) find all the annotations associated with embed_model_version_id = "123"
     * 3) find all the annotations that are trusted, etc.
     * Since all the annotations under the hood are joined to the embedding model's annotation
     * using worker_id's of other models like cluster models or concept models should be
     * combinable with queries like visual search (a query with Output filled in).
     * ########## Supported fields ##########
     *  - annotation_info - allows searching by empty annotation info
     *    note that searching by empty annotation info will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty annotation info.
     *  - annotation_info.fields - filter by annotation info
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - data.geo.geo_box[].geo_point.latitude
     *  - data.geo.geo_box[].geo_point.longitude
     *  - data.geo.geo_limit.type
     *  - data.geo.geo_limit.value
     *  - data.geo.geo_point.latitude
     *  - data.geo.geo_point.longitude
     *  - data.image.url
     *  - data.metadata - allow search with empty metadata
     *    note that searching by empty metadata will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
     *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
     *  - input_id
     *  - input_level
     *  - model_version_id
     *  - status.code
     *  - task_id
     *  - trusted
     *  - user_id
     * 
* * .clarifai.api.Annotation annotation = 4; * @return Whether the annotation field is set. */ public boolean hasAnnotation() { return annotationBuilder_ != null || annotation_ != null; } /** *
     * FILTER by annotation information. This is more flexible than just filtering by
     * Input information because in the general case each input can have several annotations.
     * Some example use cases for filtering by annotations:
     * 1) find all the inputs annotated "dog" by worker_id = "XYZ"
     * 2) find all the annotations associated with embed_model_version_id = "123"
     * 3) find all the annotations that are trusted, etc.
     * Since all the annotations under the hood are joined to the embedding model's annotation
     * using worker_id's of other models like cluster models or concept models should be
     * combinable with queries like visual search (a query with Output filled in).
     * ########## Supported fields ##########
     *  - annotation_info - allows searching by empty annotation info
     *    note that searching by empty annotation info will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty annotation info.
     *  - annotation_info.fields - filter by annotation info
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - data.geo.geo_box[].geo_point.latitude
     *  - data.geo.geo_box[].geo_point.longitude
     *  - data.geo.geo_limit.type
     *  - data.geo.geo_limit.value
     *  - data.geo.geo_point.latitude
     *  - data.geo.geo_point.longitude
     *  - data.image.url
     *  - data.metadata - allow search with empty metadata
     *    note that searching by empty metadata will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
     *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
     *  - input_id
     *  - input_level
     *  - model_version_id
     *  - status.code
     *  - task_id
     *  - trusted
     *  - user_id
     * 
* * .clarifai.api.Annotation annotation = 4; * @return The annotation. */ public com.clarifai.grpc.api.Annotation getAnnotation() { if (annotationBuilder_ == null) { return annotation_ == null ? com.clarifai.grpc.api.Annotation.getDefaultInstance() : annotation_; } else { return annotationBuilder_.getMessage(); } } /** *
     * FILTER by annotation information. This is more flexible than just filtering by
     * Input information because in the general case each input can have several annotations.
     * Some example use cases for filtering by annotations:
     * 1) find all the inputs annotated "dog" by worker_id = "XYZ"
     * 2) find all the annotations associated with embed_model_version_id = "123"
     * 3) find all the annotations that are trusted, etc.
     * Since all the annotations under the hood are joined to the embedding model's annotation
     * using worker_id's of other models like cluster models or concept models should be
     * combinable with queries like visual search (a query with Output filled in).
     * ########## Supported fields ##########
     *  - annotation_info - allows searching by empty annotation info
     *    note that searching by empty annotation info will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty annotation info.
     *  - annotation_info.fields - filter by annotation info
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - data.geo.geo_box[].geo_point.latitude
     *  - data.geo.geo_box[].geo_point.longitude
     *  - data.geo.geo_limit.type
     *  - data.geo.geo_limit.value
     *  - data.geo.geo_point.latitude
     *  - data.geo.geo_point.longitude
     *  - data.image.url
     *  - data.metadata - allow search with empty metadata
     *    note that searching by empty metadata will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
     *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
     *  - input_id
     *  - input_level
     *  - model_version_id
     *  - status.code
     *  - task_id
     *  - trusted
     *  - user_id
     * 
* * .clarifai.api.Annotation annotation = 4; */ public Builder setAnnotation(com.clarifai.grpc.api.Annotation value) { if (annotationBuilder_ == null) { if (value == null) { throw new NullPointerException(); } annotation_ = value; onChanged(); } else { annotationBuilder_.setMessage(value); } return this; } /** *
     * FILTER by annotation information. This is more flexible than just filtering by
     * Input information because in the general case each input can have several annotations.
     * Some example use cases for filtering by annotations:
     * 1) find all the inputs annotated "dog" by worker_id = "XYZ"
     * 2) find all the annotations associated with embed_model_version_id = "123"
     * 3) find all the annotations that are trusted, etc.
     * Since all the annotations under the hood are joined to the embedding model's annotation
     * using worker_id's of other models like cluster models or concept models should be
     * combinable with queries like visual search (a query with Output filled in).
     * ########## Supported fields ##########
     *  - annotation_info - allows searching by empty annotation info
     *    note that searching by empty annotation info will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty annotation info.
     *  - annotation_info.fields - filter by annotation info
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - data.geo.geo_box[].geo_point.latitude
     *  - data.geo.geo_box[].geo_point.longitude
     *  - data.geo.geo_limit.type
     *  - data.geo.geo_limit.value
     *  - data.geo.geo_point.latitude
     *  - data.geo.geo_point.longitude
     *  - data.image.url
     *  - data.metadata - allow search with empty metadata
     *    note that searching by empty metadata will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
     *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
     *  - input_id
     *  - input_level
     *  - model_version_id
     *  - status.code
     *  - task_id
     *  - trusted
     *  - user_id
     * 
* * .clarifai.api.Annotation annotation = 4; */ public Builder setAnnotation( com.clarifai.grpc.api.Annotation.Builder builderForValue) { if (annotationBuilder_ == null) { annotation_ = builderForValue.build(); onChanged(); } else { annotationBuilder_.setMessage(builderForValue.build()); } return this; } /** *
     * FILTER by annotation information. This is more flexible than just filtering by
     * Input information because in the general case each input can have several annotations.
     * Some example use cases for filtering by annotations:
     * 1) find all the inputs annotated "dog" by worker_id = "XYZ"
     * 2) find all the annotations associated with embed_model_version_id = "123"
     * 3) find all the annotations that are trusted, etc.
     * Since all the annotations under the hood are joined to the embedding model's annotation
     * using worker_id's of other models like cluster models or concept models should be
     * combinable with queries like visual search (a query with Output filled in).
     * ########## Supported fields ##########
     *  - annotation_info - allows searching by empty annotation info
     *    note that searching by empty annotation info will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty annotation info.
     *  - annotation_info.fields - filter by annotation info
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - data.geo.geo_box[].geo_point.latitude
     *  - data.geo.geo_box[].geo_point.longitude
     *  - data.geo.geo_limit.type
     *  - data.geo.geo_limit.value
     *  - data.geo.geo_point.latitude
     *  - data.geo.geo_point.longitude
     *  - data.image.url
     *  - data.metadata - allow search with empty metadata
     *    note that searching by empty metadata will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
     *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
     *  - input_id
     *  - input_level
     *  - model_version_id
     *  - status.code
     *  - task_id
     *  - trusted
     *  - user_id
     * 
* * .clarifai.api.Annotation annotation = 4; */ public Builder mergeAnnotation(com.clarifai.grpc.api.Annotation value) { if (annotationBuilder_ == null) { if (annotation_ != null) { annotation_ = com.clarifai.grpc.api.Annotation.newBuilder(annotation_).mergeFrom(value).buildPartial(); } else { annotation_ = value; } onChanged(); } else { annotationBuilder_.mergeFrom(value); } return this; } /** *
     * FILTER by annotation information. This is more flexible than just filtering by
     * Input information because in the general case each input can have several annotations.
     * Some example use cases for filtering by annotations:
     * 1) find all the inputs annotated "dog" by worker_id = "XYZ"
     * 2) find all the annotations associated with embed_model_version_id = "123"
     * 3) find all the annotations that are trusted, etc.
     * Since all the annotations under the hood are joined to the embedding model's annotation
     * using worker_id's of other models like cluster models or concept models should be
     * combinable with queries like visual search (a query with Output filled in).
     * ########## Supported fields ##########
     *  - annotation_info - allows searching by empty annotation info
     *    note that searching by empty annotation info will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty annotation info.
     *  - annotation_info.fields - filter by annotation info
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - data.geo.geo_box[].geo_point.latitude
     *  - data.geo.geo_box[].geo_point.longitude
     *  - data.geo.geo_limit.type
     *  - data.geo.geo_limit.value
     *  - data.geo.geo_point.latitude
     *  - data.geo.geo_point.longitude
     *  - data.image.url
     *  - data.metadata - allow search with empty metadata
     *    note that searching by empty metadata will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
     *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
     *  - input_id
     *  - input_level
     *  - model_version_id
     *  - status.code
     *  - task_id
     *  - trusted
     *  - user_id
     * 
* * .clarifai.api.Annotation annotation = 4; */ public Builder clearAnnotation() { if (annotationBuilder_ == null) { annotation_ = null; onChanged(); } else { annotation_ = null; annotationBuilder_ = null; } return this; } /** *
     * FILTER by annotation information. This is more flexible than just filtering by
     * Input information because in the general case each input can have several annotations.
     * Some example use cases for filtering by annotations:
     * 1) find all the inputs annotated "dog" by worker_id = "XYZ"
     * 2) find all the annotations associated with embed_model_version_id = "123"
     * 3) find all the annotations that are trusted, etc.
     * Since all the annotations under the hood are joined to the embedding model's annotation
     * using worker_id's of other models like cluster models or concept models should be
     * combinable with queries like visual search (a query with Output filled in).
     * ########## Supported fields ##########
     *  - annotation_info - allows searching by empty annotation info
     *    note that searching by empty annotation info will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty annotation info.
     *  - annotation_info.fields - filter by annotation info
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - data.geo.geo_box[].geo_point.latitude
     *  - data.geo.geo_box[].geo_point.longitude
     *  - data.geo.geo_limit.type
     *  - data.geo.geo_limit.value
     *  - data.geo.geo_point.latitude
     *  - data.geo.geo_point.longitude
     *  - data.image.url
     *  - data.metadata - allow search with empty metadata
     *    note that searching by empty metadata will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
     *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
     *  - input_id
     *  - input_level
     *  - model_version_id
     *  - status.code
     *  - task_id
     *  - trusted
     *  - user_id
     * 
* * .clarifai.api.Annotation annotation = 4; */ public com.clarifai.grpc.api.Annotation.Builder getAnnotationBuilder() { onChanged(); return getAnnotationFieldBuilder().getBuilder(); } /** *
     * FILTER by annotation information. This is more flexible than just filtering by
     * Input information because in the general case each input can have several annotations.
     * Some example use cases for filtering by annotations:
     * 1) find all the inputs annotated "dog" by worker_id = "XYZ"
     * 2) find all the annotations associated with embed_model_version_id = "123"
     * 3) find all the annotations that are trusted, etc.
     * Since all the annotations under the hood are joined to the embedding model's annotation
     * using worker_id's of other models like cluster models or concept models should be
     * combinable with queries like visual search (a query with Output filled in).
     * ########## Supported fields ##########
     *  - annotation_info - allows searching by empty annotation info
     *    note that searching by empty annotation info will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty annotation info.
     *  - annotation_info.fields - filter by annotation info
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - data.geo.geo_box[].geo_point.latitude
     *  - data.geo.geo_box[].geo_point.longitude
     *  - data.geo.geo_limit.type
     *  - data.geo.geo_limit.value
     *  - data.geo.geo_point.latitude
     *  - data.geo.geo_point.longitude
     *  - data.image.url
     *  - data.metadata - allow search with empty metadata
     *    note that searching by empty metadata will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
     *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
     *  - input_id
     *  - input_level
     *  - model_version_id
     *  - status.code
     *  - task_id
     *  - trusted
     *  - user_id
     * 
* * .clarifai.api.Annotation annotation = 4; */ public com.clarifai.grpc.api.AnnotationOrBuilder getAnnotationOrBuilder() { if (annotationBuilder_ != null) { return annotationBuilder_.getMessageOrBuilder(); } else { return annotation_ == null ? com.clarifai.grpc.api.Annotation.getDefaultInstance() : annotation_; } } /** *
     * FILTER by annotation information. This is more flexible than just filtering by
     * Input information because in the general case each input can have several annotations.
     * Some example use cases for filtering by annotations:
     * 1) find all the inputs annotated "dog" by worker_id = "XYZ"
     * 2) find all the annotations associated with embed_model_version_id = "123"
     * 3) find all the annotations that are trusted, etc.
     * Since all the annotations under the hood are joined to the embedding model's annotation
     * using worker_id's of other models like cluster models or concept models should be
     * combinable with queries like visual search (a query with Output filled in).
     * ########## Supported fields ##########
     *  - annotation_info - allows searching by empty annotation info
     *    note that searching by empty annotation info will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty annotation info.
     *  - annotation_info.fields - filter by annotation info
     *  - data.concepts[].id
     *  - data.concepts[].name
     *  - data.concepts[].value
     *  - data.geo.geo_box[].geo_point.latitude
     *  - data.geo.geo_box[].geo_point.longitude
     *  - data.geo.geo_limit.type
     *  - data.geo.geo_limit.value
     *  - data.geo.geo_point.latitude
     *  - data.geo.geo_point.longitude
     *  - data.image.url
     *  - data.metadata - allow search with empty metadata
     *    note that searching by empty metadata will actually not influence the search results.
     *    however, in order to be user-friendly, we are still supporting searching by empty metadata.
     *  - data.metadata.fields - filter by metadata. metadata key&value fields are OR-ed.
     *  - input_id
     *  - input_level
     *  - model_version_id
     *  - status.code
     *  - task_id
     *  - trusted
     *  - user_id
     * 
* * .clarifai.api.Annotation annotation = 4; */ private com.google.protobuf.SingleFieldBuilderV3< com.clarifai.grpc.api.Annotation, com.clarifai.grpc.api.Annotation.Builder, com.clarifai.grpc.api.AnnotationOrBuilder> getAnnotationFieldBuilder() { if (annotationBuilder_ == null) { annotationBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.clarifai.grpc.api.Annotation, com.clarifai.grpc.api.Annotation.Builder, com.clarifai.grpc.api.AnnotationOrBuilder>( getAnnotation(), getParentForChildren(), isClean()); annotation_ = null; } return annotationBuilder_; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:clarifai.api.And) } // @@protoc_insertion_point(class_scope:clarifai.api.And) private static final com.clarifai.grpc.api.And DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.clarifai.grpc.api.And(); } public static com.clarifai.grpc.api.And getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public And parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new And(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.clarifai.grpc.api.And getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy