com.cobber.fta.driver.faker.FakerDoubleLT Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cli Show documentation
Show all versions of cli Show documentation
Analyze Text data to determine simple type and Semantic type information as well as other key metrics associated with a text stream.
/*
* Copyright 2017-2024 Tim Segall
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.cobber.fta.driver.faker;
import com.cobber.fta.PluginDefinition;
public class FakerDoubleLT extends FakerLT {
private boolean initialized = false;
private Double low;
private Double high;
private String format = "%f";
private String distribution = "random";
private double range;
private double last = Double.MIN_VALUE;
public FakerDoubleLT(final PluginDefinition plugin) {
super(plugin);
}
@Override
public String nextRandom() {
if (!initialized) {
if (parameters != null) {
if (parameters.format != null)
format = parameters.format;
if (parameters.low != null)
low = Double.parseDouble(parameters.low);
if (parameters.high != null)
high = Double.parseDouble(parameters.high);
if (parameters.distribution != null)
distribution = parameters.distribution;
}
if (high == null)
high = Double.MAX_VALUE;
if (low == null)
low = 0.0;
range = high - low;
initialized = true;
}
double d = 0.0;
if ("random".equals(distribution)) {
d = getRandom().nextDouble();
d *= range;
if (low != null)
d += low;
} else if ("monotonic_increasing".equals(distribution)) {
if (last == Double.MIN_VALUE)
last = low;
else {
if (++last > high)
last = low;
}
d = last;
} else if ("monotonic_decreasing".equals(distribution)) {
if (last == Long.MIN_VALUE) {
last = high;
}
else {
if (--last < low)
last = high;
}
d = last;
} else if ("gaussian".equals(distribution)) {
d = getRandom().nextGaussian();
d += 5.0; // Capture 5 SD's (basically convert [-5.0,5.0] to [0.0,10.0]
d = (d * range)/10; // Scale up from [0.0,10.0] to the range
d += low; // Shift origin to the low bound
}
return String.format(format, d);
}
}