com.cobber.fta.plugins.Identifier Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of fta Show documentation
Show all versions of fta Show documentation
Analyze Text data to determine simple type and Semantic type information as well as other key metrics associated with a text stream.
/*
* Copyright 2017-2024 Tim Segall
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.cobber.fta.plugins;
import com.cobber.fta.AnalysisConfig;
import com.cobber.fta.AnalyzerContext;
import com.cobber.fta.Facts;
import com.cobber.fta.FiniteMap;
import com.cobber.fta.LogicalTypeInfinite;
import com.cobber.fta.PluginAnalysis;
import com.cobber.fta.PluginDefinition;
import com.cobber.fta.core.FTAPluginException;
import com.cobber.fta.core.FTAType;
import com.cobber.fta.core.Utils;
import com.cobber.fta.token.TokenStreams;
/**
* Plugin to detect Identifiers.
*
* This plugin is SPECIAL it is never used inline - it is only used after all other analysis has been completed
*
*/
public class Identifier extends LogicalTypeInfinite {
private final int THRESHOLD_MONOTONIC = 50;
private final int THRESHOLD_UNIQUENESS_TEST = 50;
/** The Regular Expression for this Semantic type. */
private static final String REGEXP = ".+";
private int nextID = 0;
/**
* Construct a plugin to detect Identifiers based on the Plugin Definition.
* @param plugin The definition of this plugin.
*/
public Identifier(final PluginDefinition plugin) {
super(plugin);
}
@Override
public boolean initialize(final AnalysisConfig analysisConfig) throws FTAPluginException {
super.initialize(analysisConfig);
return true;
}
@Override
public String nextRandom() {
return String.valueOf(++nextID);
}
@Override
public FTAType getBaseType() {
return FTAType.STRING;
}
@Override
public String getRegExp() {
return REGEXP;
}
@Override
public boolean isValid(final String input, final boolean detectMode, final long count) {
return input.length() < 40;
}
@Override
public boolean isCandidate(final String trimmed, final StringBuilder compressed, final int[] charCounts, final int[] lastIndex) {
// This plugin is SPECIAL it is never used inline - it is only used after all other analysis has been completed
return false;
}
@Override
public PluginAnalysis analyzeSet(final AnalyzerContext context, final long matchCount, final long realSamples, final String currentRegExp,
final Facts facts, final FiniteMap cardinality, final FiniteMap outliers, final TokenStreams tokenStreams, final AnalysisConfig analysisConfig) {
if (facts.uniqueness == null || facts.uniqueness != 1.0 || facts.sampleCount != facts.matchCount)
return PluginAnalysis.SIMPLE_NOT_OK;
if (getHeaderConfidence(context.getStreamName()) >= 85)
return PluginAnalysis.OK;
// If the type is LONG and we have a reasonable number of samples then we can do further analysis
if (FTAType.LONG.equals(facts.getMatchTypeInfo().getBaseType())) {
// We know whether it is monotonic increasing or decreasing - if so declare it good
if (facts.matchCount >= THRESHOLD_MONOTONIC && (facts.monotonicDecreasing || facts.monotonicIncreasing)
&& facts.minLong >= 0 && facts.maxLong - facts.minLong == facts.matchCount - 1)
return PluginAnalysis.OK;
// Given the size of the Sample Space and the number of samples we can calculate the likelihood that is is unique
if (facts.matchCount >= THRESHOLD_UNIQUENESS_TEST && Utils.uniquenessProbability((int)(facts.maxLong - facts.minLong), (int)facts.matchCount) > .99)
return PluginAnalysis.OK;
}
return PluginAnalysis.SIMPLE_NOT_OK;
}
@Override
public double getConfidence(final long matchCount, final long realSamples, final AnalyzerContext context) {
if (matchCount == 0)
return 0;
final int headerConfidence = getHeaderConfidence(context.getStreamName());
if (headerConfidence >= 85)
return (double)headerConfidence/100;
if (realSamples <= 500)
return .95;
if (realSamples <= 1000)
return .97;
return .99;
}
}