All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.codename1.ui.geom.GeneralPath Maven / Gradle / Ivy

/*
 * Copyright (c) 2012, Codename One and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Codename One designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *  
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 * 
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 * 
 * Please contact Codename One through http://www.codenameone.com/ if you 
 * need additional information or have any questions.
 */
package com.codename1.ui.geom;


import com.codename1.io.Log;
import com.codename1.ui.Transform;
import com.codename1.ui.geom.Geometry.BezierCurve;
import com.codename1.util.MathUtil;
import java.util.ArrayList;
import java.util.Arrays;

/**
 * 

A general geometric path, consisting of any number of subpaths constructed * out of straight lines and cubic or quadratic Bezier curves. The inside of the * curve is defined for drawing purposes by a winding rule. Either the * {@link #WIND_EVEN_ODD} or {@link #WIND_NON_ZERO} winding rule can be chosen.

* *

A drawing of a GeneralPath

* * * *

* The {@link #WIND_EVEN_ODD} winding rule defines a point as inside a path if: * A ray from the point towards infinity in an arbitrary direction intersects * the path an odd number of times. Points {@literal A} and {@literal C} in the * image are considered to be outside the path. (both intersect twice) Point * {@literal B} intersects once, and is inside.

* *

* The {@link #WIND_NON_ZERO} winding rule defines a point as inside a path if: * The path intersects the ray in an equal number of opposite directions. Point * {@link A} in the image is outside (one intersection in the 'up' direction, * one in the 'down' direction) Point {@literal B} in the image is inside (one * intersection 'down') Point C in the image is inside (two intersections in the * 'down' direction)

* * * Fill a shape general path * *

Note: This description and image were copied from the * GNU classpath * docs). License here http://www.gnu.org/licenses/licenses.html#FDL

* * @author shannah * * @see com.codename1.ui.Graphics#drawShape * @see com.codename1.ui.Graphics#fillShape */ public final class GeneralPath implements Shape { private static int MAX_POOL_SIZE=20; private static ArrayList pathPool; private static ArrayList rectPool; private static ArrayList floatPool; private static ArrayList boolPool; private static ArrayList iteratorPool; private static ArrayList pathPool() { if (pathPool == null) { pathPool = new ArrayList(); } return pathPool; } private static ArrayList rectPool() { if (rectPool == null) { rectPool = new ArrayList(); } return rectPool; } private static ArrayList floatPool() { if (floatPool == null) { floatPool = new ArrayList(); } return floatPool; } private static ArrayList boolPool() { if (boolPool == null) { boolPool = new ArrayList(); } return boolPool; } private static ArrayList iteratorPool() { if (iteratorPool == null) { iteratorPool = new ArrayList(); } return iteratorPool; } private static synchronized GeneralPath createPathFromPool() { if (!pathPool().isEmpty()) { GeneralPath out = pathPool.remove(pathPool.size()-1); out.reset(); return out; } return new GeneralPath(); } private static synchronized Rectangle createRectFromPool() { if (!rectPool().isEmpty()) { return rectPool.remove(rectPool.size()-1); } return new Rectangle(); } private static synchronized float[] createFloatArrayFromPool(int size) { int len = floatPool().size(); for (int i=0; i= MAX_POOL_SIZE || p == null) return; pathPool.add(p); } private static synchronized void recycle(Rectangle r) { if (rectPool.size() >= MAX_POOL_SIZE || r == null) return; rectPool.add(r); } private static synchronized void recycle(float[] a) { if (floatPool().size() >= MAX_POOL_SIZE || a == null) return; floatPool.add(a); } private static synchronized void recycle(boolean[] b) { if (boolPool().size() >= MAX_POOL_SIZE || b == null) { return; } boolPool.add(b); } private static synchronized void recycle(Iterator it) { if (iteratorPool().size() >= MAX_POOL_SIZE || it == null) { return; } iteratorPool.add(it); } /** * Creates a new GeneralPath from an object Pool. This is useful * if you need to create a temporary General path that you wish * to dispose of after using. * *

You should return this object back to the pool when you are done * using the {@link #recycle(com.codename1.ui.geom.GeneralPath) } method. * @return */ public static GeneralPath createFromPool() { return createPathFromPool(); } private boolean dirty = false; // END Alpha Mask Caching Functionality //-------------------------------------------------------------------------- /** * Same constant as {@link PathIterator#WIND_EVEN_ODD} */ public static final int WIND_EVEN_ODD = PathIterator.WIND_EVEN_ODD; /** * Same constant as {@link PathIterator#WIND_NON_ZERO} */ public static final int WIND_NON_ZERO = PathIterator.WIND_NON_ZERO; /** * The buffers size */ private static final int BUFFER_SIZE = 10; /** * The buffers capacity */ private static final int BUFFER_CAPACITY = 10; // These are package protected for ODD /** * The point's types buffer */ byte[] types; /** * The points buffer */ float[] points; /** * The point's type buffer size */ int typeSize; /** * The points buffer size */ int pointSize; /** * The path rule */ int rule; /** * The space amount in points buffer for different segmenet's types */ private static int pointShift[] = { 2, // MOVETO 2, // LINETO 4, // QUADTO 6, // CUBICTO 0}; // CLOSE /* * GeneralPath path iterator */ private class Iterator implements PathIterator { /** * The current cursor position in types buffer */ int typeIndex; /** * The current cursor position in points buffer */ int pointIndex; /** * The source GeneralPath object */ GeneralPath p; Transform transform; /** * Constructs a new GeneralPath.Iterator for given general path * * @param path - the source GeneralPath object */ Iterator(GeneralPath path) { this.p = path; } private void reset() { typeIndex = 0; pointIndex = 0; } public int getWindingRule() { return p.getWindingRule(); } public boolean isDone() { return typeIndex >= p.typeSize; } public void next() { typeIndex++; } private void transformSegmentInPlace() { if (isDone()) { // awt.4B=Iterator out of bounds throw new IndexOutOfBoundsException("Path done"); //$NON-NLS-1$ } if (transform == null) { return; } int type = p.types[typeIndex]; int count = GeneralPath.pointShift[type]; for (int i=0; i < count; i+=2) { buf[0] = p.points[pointIndex + i]; buf[1] = p.points[pointIndex + i + 1]; transform.transformPoint(buf, buf); p.points[pointIndex+i] = buf[0]; p.points[pointIndex+i+1] = buf[1]; } } public int currentSegment(double[] coords) { float[] fcoords = createFloatArrayFromPool(6); try { int res = currentSegment(fcoords); int type = p.types[typeIndex]; int count = GeneralPath.pointShift[type]; for (int i=0; i< count; i ++) { coords[i] = fcoords[i]; } return res; } finally { recycle(fcoords); } } private float[] buf = new float[2]; public int currentSegment(float[] coords) { if (isDone()) { // awt.4B=Iterator out of bounds throw new IndexOutOfBoundsException("Path done"); //$NON-NLS-1$ } int type = p.types[typeIndex]; int count = GeneralPath.pointShift[type]; if (transform == null) { System.arraycopy(p.points, pointIndex, coords, 0, count); } else { transform.transformPoints(2, p.points, pointIndex, coords, 0, count / 2); } pointIndex += count; return type; } } /** * Constructs a GeneralPath with the default ({@link #WIND_NON_ZERO}) * winding rule and initial capacity (10). */ public GeneralPath() { this(WIND_NON_ZERO, BUFFER_SIZE); } /** * Constructs a GeneralPath with a specific winding rule and the default * initial capacity (10). * * @param rule The winding rule. One of {@link #WIND_NON_ZERO} and * {@link #WIND_EVEN_ODD} * @see #WIND_NON_ZERO * @see #WIND_EVEN_ODD */ public GeneralPath(int rule) { this(rule, BUFFER_SIZE); } /** * Constructs a GeneralPath with a specific winding rule and the initial * capacity. The initial capacity should be the approximate number of path * segments to be used. * * @param rule The winding rule. ({@link #WIND_NON_ZERO} or * {@link #WIND_EVEN_ODD}). * @param initialCapacity the inital capacity, in path segments */ public GeneralPath(int rule, int initialCapacity) { setWindingRule(rule); types = new byte[initialCapacity]; points = new float[initialCapacity * 2]; } /** * Checks to see if this path forms a polygon. * @return True if the path is a polygon. */ public boolean isPolygon() { if (isRectangle()) { return true; } Iterator it = createIteratorFromPool(this, null); float[] curr = createFloatArrayFromPool(6); float[] firstPoint = createFloatArrayFromPool(2); try { boolean firstMove = false; int cmd = -1; while (!it.isDone()) { switch (cmd = it.currentSegment(curr)) { case PathIterator.SEG_MOVETO: { if (firstMove) { return false; } firstMove = true; firstPoint[0] = curr[0]; firstPoint[1] = curr[1]; break; } case PathIterator.SEG_CUBICTO: case PathIterator.SEG_QUADTO: return false; } it.next(); } return cmd == PathIterator.SEG_CLOSE || (curr[0] == firstPoint[0] && curr[1] == firstPoint[1]); } finally { recycle(it); recycle(curr); recycle(firstPoint); } } /** * Returns the number of path commands in this path. * @return The number of path commands in this path. */ public int getTypesSize() { return typeSize; } /** * Returns the number of points in this path. * @return The number of points in this path. */ public int getPointsSize() { return pointSize; } /** * Returns a copy of the types (aka path commands) in this path. * @param out An array to copy the path commands into. */ public void getTypes(byte[] out) { System.arraycopy(types, 0, out, 0, Math.min(types.length, out.length)); } /** * Returns a copy of the points in this path. * @param out An array to copy the points into. */ public void getPoints(float[] out) { System.arraycopy(points, 0, out, 0, Math.min(points.length, out.length)); } /** * Constructs a GeneralPath from an arbitrary shape object. The Shapes * PathIterator path and winding rule will be used. * * @param shape */ public GeneralPath(Shape shape) { this(WIND_NON_ZERO, BUFFER_SIZE); if (shape.getClass() == GeneralPath.class) { setPath((GeneralPath)shape, null); } else { PathIterator p = shape.getPathIterator(); setWindingRule(p.getWindingRule()); append(p, false); } } public String toString(){ StringBuilder sb = new StringBuilder(); sb.append("[General Path: "); Iterator it = createIteratorFromPool(this, null); float[] buf = createFloatArrayFromPool(6);//new float[6]; try { while (!it.isDone() ){ int type = it.currentSegment(buf); switch ( type ){ case PathIterator.SEG_MOVETO: sb.append("Move ("+buf[0]+","+buf[1]+"), "); break; case PathIterator.SEG_LINETO: sb.append("Line ("+buf[0]+","+buf[1]+"), "); break; case PathIterator.SEG_CUBICTO: sb.append("Curve ("+buf[0]+","+buf[1]+".."+buf[2]+","+buf[3]+".."+buf[4]+","+buf[5]+")"); break; case PathIterator.SEG_QUADTO: sb.append("Curve ("+buf[0]+","+buf[1]+".."+buf[2]+","+buf[3]+")"); break; case PathIterator.SEG_CLOSE: sb.append(" CLOSE]"); break; } it.next(); } } finally { recycle(buf); recycle(it); } return sb.toString(); } /** * Sets the path's winding rule, which controls which areas are considered * 'inside' or 'outside' the path on drawing. Valid rules are * {@link #WIND_EVEN_ODD} for an even-odd winding rule, or * {@link #WIND_NON_ZERO} for a non-zero winding rule. * * @param rule the rule. ({@link #WIND_NON_ZERO} or {@link #WIND_EVEN_ODD}). */ public void setWindingRule(int rule) { if (rule != WIND_EVEN_ODD && rule != WIND_NON_ZERO) { // awt.209=Invalid winding rule value throw new java.lang.IllegalArgumentException("Invalid winding rule"); //$NON-NLS-1$ } dirty = true; this.rule = rule; } public boolean equals(Shape shape, Transform t) { if (t != null && !t.isIdentity()) { GeneralPath p = createPathFromPool(); p.setShape(shape, t); try { return equals(p, (Transform)null); } finally { recycle(p); } } if (shape == this) return true; if (shape instanceof Rectangle) { Rectangle r = (Rectangle)shape; Rectangle tmpRect = createRectFromPool(); try { getBounds(tmpRect); return r.equals(tmpRect); } finally { recycle(tmpRect); } } else if (shape instanceof GeneralPath) { GeneralPath tmpPath = (GeneralPath)shape; return Arrays.equals(points, tmpPath.points) && Arrays.equals(types, tmpPath.types); } else { GeneralPath tmpPath2 = createPathFromPool(); try { tmpPath2.setShape(shape, null); return equals(tmpPath2, (Transform)null); } finally { recycle(tmpPath2); } } } /** * Returns the path's current winding rule. * * @return {@link #WIND_NON_ZERO} or {@link #WIND_EVEN_ODD} */ public int getWindingRule() { return rule; } /** * Checks points and types buffer size to add pointCount points. If * necessary realloc buffers to enlarge size. * * @param pointCount - the point count to be added in buffer */ private void checkBuf(int pointCount, boolean checkMove) { if (checkMove && typeSize == 0) { // awt.20A=First segment should be SEG_MOVETO type throw new IndexOutOfBoundsException("First segment must be a moveto"); //$NON-NLS-1$ } if (typeSize == types.length) { byte tmp[] = new byte[typeSize + BUFFER_CAPACITY]; System.arraycopy(types, 0, tmp, 0, typeSize); types = tmp; } if (pointSize + pointCount > points.length) { float tmp[] = new float[pointSize + Math.max(BUFFER_CAPACITY * 2, pointCount)]; System.arraycopy(points, 0, tmp, 0, pointSize); points = tmp; } } public void moveTo(double x, double y){ moveTo((float)x, (float)y); } /** * Adds a new point to a path. * * @param x the x-coordinate. * @param y the y-coordinate. */ public void moveTo(float x, float y) { if (typeSize > 0 && types[typeSize - 1] == PathIterator.SEG_MOVETO) { points[pointSize - 2] = x; points[pointSize - 1] = y; } else { checkBuf(2, false); types[typeSize++] = PathIterator.SEG_MOVETO; points[pointSize++] = x; points[pointSize++] = y; } dirty = true; } public void lineTo(double x, double y){ lineTo((float)x, (float)y); } /** * Appends a straight line to the current path. * * @param x x coordinate of the line endpoint. * @param y y coordinate of the line endpoint. */ public void lineTo(float x, float y) { checkBuf(2, true); types[typeSize++] = PathIterator.SEG_LINETO; points[pointSize++] = x; points[pointSize++] = y; dirty = true; } public void quadTo(double x1, double y1, double x2, double y2){ quadTo((float)x1, (float)y1, (float)x2, (float)y2); } /** * Appends a quadratic Bezier curve to the current path. * * @param x1 x coordinate of the control point * @param y1 y coordinate of the control point * @param x2 x coordinate of the curve endpoint. * @param y2 y coordinate of the curve endpoint. */ public void quadTo(float x1, float y1, float x2, float y2) { checkBuf(4, true); types[typeSize++] = PathIterator.SEG_QUADTO; points[pointSize++] = x1; points[pointSize++] = y1; points[pointSize++] = x2; points[pointSize++] = y2; dirty = true; } public void curveTo(double x1, double y1, double x2, double y2, double x3, double y3){ curveTo((float)x1, (float)y1, (float)x2, (float)y2, (float)x3, (float)y3); } /** * Appends a cubic Bezier curve to the current path. * * @param x1 x coordinate of the first control point * @param y1 y coordinate of the first control point * @param x2 x coordinate of the second control point * @param y2 y coordinate of the second control point * @param x3 x coordinate of the curve endpoint. * @param y3 y coordinate of the curve endpoint. */ public void curveTo(float x1, float y1, float x2, float y2, float x3, float y3) { checkBuf(6, true); types[typeSize++] = PathIterator.SEG_CUBICTO; points[pointSize++] = x1; points[pointSize++] = y1; points[pointSize++] = x2; points[pointSize++] = y2; points[pointSize++] = x3; points[pointSize++] = y3; dirty = true; } /** * Draws an elliptical arc on the path given the provided bounds. * @param x Left x coord of bounding rect. * @param y Top y coordof bounding rect. * @param w Width of bounding rect. * @param h Height of bounding rect. * @param startAngle Start angle on ellipse in radians. Counter-clockwise from 3-o'clock. * @param sweepAngle Sweep angle in radians. Counter-clockwise. */ public void arc(float x, float y, float w, float h, float startAngle, float sweepAngle) { arc(x, y, w, h, startAngle, sweepAngle, false); } /** * Draws an elliptical arc on the path given the provided bounds. * @param x Left x coord of bounding rect. * @param y Top y coordof bounding rect. * @param w Width of bounding rect. * @param h Height of bounding rect. * @param startAngle Start angle on ellipse in radians. Counter-clockwise from 3-o'clock. * @param sweepAngle Sweep angle in radians. Counter-clockwise. * @param joinPath If true, then this will join the arc to the existing path with a line. */ public void arc(float x, float y, float w, float h, float startAngle, float sweepAngle, boolean joinPath) { Ellipse e = new Ellipse(); Ellipse.initWithBounds(e, x, y, w, h); e.addToPath(this, -startAngle, -sweepAngle, joinPath); } /** * Draws an elliptical arc on the path given the provided bounds. * @param x Left x coord of bounding rect. * @param y Top y coordof bounding rect. * @param w Width of bounding rect. * @param h Height of bounding rect. * @param startAngle Start angle on ellipse in radians. Counter-clockwise from 3-o'clock. * @param sweepAngle Sweep angle in radians. Counter-clockwise. */ public void arc(double x, double y, double w, double h, double startAngle, double sweepAngle) { arc(x, y, w, h, startAngle, sweepAngle, false); } /** * Draws an elliptical arc on the path given the provided bounds. * @param x Left x coord of bounding rect. * @param y Top y coordof bounding rect. * @param w Width of bounding rect. * @param h Height of bounding rect. * @param startAngle Start angle on ellipse in radians. Counter-clockwise from 3-o'clock. * @param sweepAngle Sweep angle in radians. Counter-clockwise. * @param joinPath If true then this will join the arc to the existing path with a line. */ public void arc(double x, double y, double w, double h, double startAngle, double sweepAngle, boolean joinPath) { arc((float)x, (float)y, (float)w, (float)h, (float)startAngle, (float)sweepAngle, joinPath); } // private static void addBezierArcToPath(GeneralPath path, double cx, double cy, // double startX, double startY, double endX, double endY) { // addBezierArcToPath(path, cx, cy, startX, startY, endX, endY, false); // } /** * * @param path * @param cx * @param cy * @param startX * @param startY * @param endX * @param endY * @param clockwise */ // private static void addBezierArcToPath(GeneralPath path, double cx, double cy, // double startX, double startY, double endX, double endY, boolean clockwise) { // if ( startX != endX || startY != endY ){ // double ax = startX - cx; // double ay = startY - cy; // double bx = endX - cx; // double by = endY- cy; // // final double r1s = ax * ax + ay * ay; // final double r2s = bx * bx + by * by; // double ellipseScaleY = 0; // if (Math.abs(r1s - r2s) > 2) { // // This is not a circle // // Let's get the arc for the circle // ellipseScaleY = Math.sqrt(((ax*ax) - (bx*bx)) / (by*by - ay*ay)); // startY = cy + ellipseScaleY * (startY-cy); // endY = cy + ellipseScaleY * (endY-cy); // // ay = startY - cy; // by = endY - cy; // } else { // double startAngle = MathUtil.atan2(ay, ax); // double endAngle = MathUtil.atan2(by, bx); // // double dist = Math.abs(endAngle - startAngle); // if (clockwise) { // if (startAngle > endAngle) { // dist = Math.PI*2-dist; // } // } else { // if (startAngle < endAngle) { // dist = Math.PI*2-dist; // } // } // // //System.out.println("dist: "+dist+" startAngle: "+startAngle+" endAngle: "+endAngle); // if (dist > Math.PI/3) { // // We bisect // double r = Math.sqrt(r1s); // double bisectAngle = (startAngle + endAngle)/2; // if (clockwise) { // if (startAngle > endAngle) { // bisectAngle += Math.PI; // } // } else { // if (startAngle < endAngle) { // bisectAngle += Math.PI; // } // } // double bisectX = cx + r * Math.cos(bisectAngle); // double bisectY = cy + r * Math.sin(bisectAngle); // addBezierArcToPath(path, cx, cy, startX, startY, bisectX, bisectY, clockwise); // addBezierArcToPath(path, cx, cy, bisectX, bisectY, endX, endY, clockwise); // return; // } // // // } // // final double q1 = r1s;//ax * ax + ay * ay; // final double q2 = q1 + ax * bx + ay * by; // final double k2 = 4d / 3d * (Math.sqrt(2d * q1 * q2) - q2) / (ax * by - ay * bx); // final float x2 = (float)(cx + ax - k2 * ay); // float y2 = (float)(cy + ay + k2 * ax); // final float x3 = (float)(cx + bx + k2 * by); // float y3 = (float)(cy + by - k2 * bx); // if (ellipseScaleY != 0) { // y2 = (float)(cy + (y2-cy)/ellipseScaleY); // y3 = (float)(cy + (y3-cy)/ellipseScaleY); // endY = (float)(cy + (endY-cy)/ellipseScaleY); // } // path.curveTo(x2, y2, x3, y3, endX, endY); // // } // } static class Ellipse { private double a; private double b; private double cx; private double cy; private EPoint _tmp1=new EPoint(); static void initWithBounds(Ellipse e, double x, double y, double w, double h) { e.cx = x+w/2; e.cy = y+h/2; e.a = w/2; e.b = h/2; } static void initWithPerimeterPoints(Ellipse e, double cx, double cy, double p1x, double p1y, double p2x, double p2y) { /* e.cx = cx; e.cy = cy; double x1 = p1x-cx; double y1 = p1y-cy; double x2 = p2x-cx; double y2 = p2y-cy; double x1s = x1*x1; double x2s = x2*x2; double y1s = y1*y1; double y2s = y2*y2; if (Math.abs(x1s-x2s) < 0.001 ||Math.abs(y1s-y2s) < 0.001) { a = b = Math.max(Math.sqrt(Math.abs(y2))); } if (Math.abs(x1s-x2s) > 0.001) { e.b = Math.sqrt((x1s*y2s-x2s-y1s)/(x1s-x2s)); double bs = e.b*e.b; e.a = Math.sqrt(x1s*bs/(bs-y1s)); } else { e.a = Math.sqrt((y1s*x2s-y2s-x1s)/(y1s-y2s)); double as = e.a*e.a; e.b = Math.sqrt(y1s*as/(as-x1s)); } */ } @Override public String toString() { return "Ellipse center=("+cx+","+cy+") a="+a+", b="+b+")"; } void getPointAtAngle(double theta, EPoint out) { double tanTheta = Math.tan(theta); double tanThetas = tanTheta*tanTheta; double bs = b*b; double as = a*a; double x = a*b/Math.sqrt(bs+as*tanThetas); if (Math.cos(theta)<0) { x = -x; } double y = a*b/Math.sqrt(as+bs/tanThetas); if (Math.sin(theta)<0) { y = -y; } out.x = x + cx; out.y = y + cy; } double getAngleAtPoint(double px, double py) { px -= cx; py -= cy; return MathUtil.atan2(py, px); } void addToPath(GeneralPath p, double startAngle, double sweepAngle, boolean join) { getPointAtAngle(startAngle, _tmp1); if (join) { p.lineTo(_tmp1.x, _tmp1.y); } else { p.moveTo(_tmp1.x, _tmp1.y); } _addToPath(p, startAngle, sweepAngle); if (!join && Math.abs(Math.abs(sweepAngle)-Math.PI*2) < 0.001) { p.closePath(); } } private void _addToPath(GeneralPath p, double startAngle, double sweepAngle) { //double _2pi = Math.PI*2; double absSweepAngle = Math.abs(sweepAngle); if (absSweepAngle < 0.0001) { // Basically zero sweep angle so we won't draw anytything here. // IOS seemed to choke when we tried to draw too small an arc return; } if (absSweepAngle > Math.PI/4) { //double halfAngle = sweepAngle/2; double diff = Math.PI/4; if (sweepAngle < 0) { diff = -diff; } _addToPath(p, startAngle, diff); _addToPath(p, startAngle+diff, sweepAngle-diff); } else { getPointAtAngle(startAngle+sweepAngle, _tmp1); //System.out.println("Line to "+_tmp1.x+", "+_tmp1.y); EPoint controlPoint = new EPoint(); calculateBezierControlPoint(startAngle, sweepAngle, controlPoint); p.quadTo(controlPoint.x, controlPoint.y, _tmp1.x, _tmp1.y); //p.lineTo(_tmp1.x, _tmp1.y); } } private void calculateBezierControlPoint(double startAngle, double sweepAngle, EPoint point) { EPoint p1 = new EPoint(); getPointAtAngle(startAngle, p1); p1.x-= cx; p1.y -= cy; EPoint p2 = new EPoint(); getPointAtAngle(startAngle+sweepAngle, p2); p2.x -= cx; p2.y -= cy; //System.out.println("p1: "+p1.x+", "+p1.y+", p2:"+p2.x+","+p2.y); double x1s = p1.x*p1.x; double y1s = p1.y*p1.y; double x2s = p2.x*p2.x; double y2s = p2.y*p2.y; double as = a*a; double bs = b*b; //point.x = (x2s*bs/(p2.y*as) + p2.y - x1s*bs/(p1.y*as) - p1.y) / (-p1.x*bs/(p1.y*as) + p2.x*bs/(p2.y*as)); //point.y = (-p1.x*bs/(p1.y*as))*point.x + x1s*bs/(p1.y*as) + p1.y; point.x = -(p1.y*(-as*y2s-bs*x2s)+as*y1s*p2.y+bs*x1s*p2.y)/(bs*p2.x*p1.y-bs*p1.x*p2.y); point.y = (p1.x*(-as*y2s-bs*x2s)+as*p2.x*y1s+bs*x1s*p2.x)/(as*p2.x*p1.y-as*p1.x*p2.y); point.x += cx; point.y += cy; //System.out.println("control: "+point.x+","+point.y); } } static class EPoint { double x; double y; } /** * Adds a circular arc to the given path by approximating it through a cubic Bezier curve, splitting it if * necessary. The precision of the approximation can be adjusted through {@code pointsOnCircle} and * {@code overlapPoints} parameters. *

* Example: imagine an arc starting from 0? and sweeping 100? with a value of * {@code pointsOnCircle} equal to 12 (threshold -> 360? / 12 = 30?): *

    *
  • if {@code overlapPoints} is {@code true}, it will be split as following: *
      *
    • from 0? to 30? (sweep 30?)
    • *
    • from 30? to 60? (sweep 30?)
    • *
    • from 60? to 90? (sweep 30?)
    • *
    • from 90? to 100? (sweep 10?)
    • *
    *
  • *
  • if {@code overlapPoints} is {@code false}, it will be split into 4 equal arcs: *
      *
    • from 0? to 25? (sweep 25?)
    • *
    • from 25? to 50? (sweep 25?)
    • *
    • from 50? to 75? (sweep 25?)
    • *
    • from 75? to 100? (sweep 25?)
    • *
    *
  • *
*

*

* For a technical explanation: * * http://hansmuller-flex.blogspot.de/2011/10/more-about-approximating-circular-arcs.html * * * @param center The center of the circle. * @param radius The radius of the circle. * @param startAngleRadians The starting angle on the circle (in radians). * @param sweepAngleRadians How long to make the total arc (in radians). * @param pointsOnCircle Defines a threshold (360? /{@code pointsOnCircle}) to split the Bezier arc to * better approximate a circular arc, depending also on the value of {@code overlapPoints}. * The suggested number to have a reasonable approximation of a circle is at least 4 (90?). * Less than 1 will be ignored (the arc will not be split). * @param overlapPoints Given the threshold defined through {@code pointsOnCircle}: *

    *
  • if {@code true}, split the arc on every angle which is a multiple of the * threshold (yields better results if drawing precision is required, * especially when stacking multiple arcs, but can potentially use more points)
  • *
  • if {@code false}, split the arc equally so that each part is shorter than * the threshold
  • *
* @param addToPath An existing path where to add the arc to, or {@code null} to create a new path. * * * @see #createBezierArcDegrees(android.graphics.PointF, float, float, float, int, boolean, android.graphics.Path) */ // private static void createBezierArcRadians(float cx, float cy, float radiusX, float radiusY, double startAngleRadians, // double sweepAngleRadians, int pointsOnCircle, boolean overlapPoints, // GeneralPath addToPath, boolean joinPath) // { // final GeneralPath path = addToPath; // if (sweepAngleRadians == 0d) { return; } // // float radius = radiusX; // float yScale = radiusY / radius; // // if (pointsOnCircle >= 1) // { // final double threshold = Math.PI * 2d / pointsOnCircle; // if (Math.abs(sweepAngleRadians) > threshold) // { // double angle = normalizeRadians(startAngleRadians); // //PointF end, start = pointFromAngleRadians(center, radius, angle); // double endX, endY; // double startX = cx + radius * Math.cos(angle); // double startY = cy + radius * Math.sin(angle) * yScale; // if (joinPath) { // path.lineTo(startX, startY); // } else { // path.moveTo(startX, startY); // } // if (overlapPoints) // { // final boolean cw = sweepAngleRadians > 0; // clockwise? // final double angleEnd = angle + sweepAngleRadians; // while (true) // { // double next = (cw ? Math.ceil(angle / threshold) : Math.floor(angle / threshold)) * threshold; // if (angle == next) { next += threshold * (cw ? 1d : -1d); } // final boolean isEnd = cw ? angleEnd <= next : angleEnd >= next; // //end = pointFromAngleRadians(center, radius, isEnd ? angleEnd : next); // endX = cx + radius * Math.cos(isEnd ? angleEnd : next); // endY = cy + radius * Math.sin(isEnd ? angleEnd : next) *yScale; // addBezierArcToPath(path, cx, cy, startX, startY, endX, endY); // if (isEnd) { break; } // angle = next; // startX = endX; // startY = endY; // } // } // else // { // final int n = Math.abs((int)Math.ceil(sweepAngleRadians / threshold)); // final double sweep = sweepAngleRadians / (double)n; // for (int i = 0; // i < n; // i++, startX = endX, startY = endY) // { // angle += sweep; // //end = pointFromAngleRadians(center, radius, angle); // endX = cx + radius * Math.cos(angle); // endY = cy + radius * Math.sin(angle) * yScale; // addBezierArcToPath(path, cx, cy, startX, startY, endX, endY); // } // // } // return; // } // } // // startAngleRadians = normalizeRadians(startAngleRadians); // double startX = cx + radius * Math.cos(startAngleRadians); // double startY = cy + radius * Math.sin(startAngleRadians) * yScale; // // double endX = cx + radius * Math.cos(startAngleRadians + sweepAngleRadians); // double endY = cy + radius * Math.sin(startAngleRadians + sweepAngleRadians) * yScale; // if (joinPath) { // path.lineTo(startX, startY); // } else { // path.moveTo(startX, startY); // } // addBezierArcToPath(path, cx, cy, startX, startY, endX, endY); // // } /** * Normalize the input radians in the range 360? > x >= 0?. * * @param radians The angle to normalize (in radians). * * @return The angle normalized in the range 360? > x >= 0?. */ // private static double normalizeRadians(double radians) // { // double PI2 = Math.PI*2d; // radians %= PI2; // if (radians < 0d) { radians += PI2; } // if (radians == PI2) { radians = 0d; } // return radians; // } /** * Adds an arc to the path. This method uses an approximation of an arc using * a cubic path. It is not a precise arc. * *

Note: The arc is drawn counter-clockwise around the center point. See {@link #arcTo(double, double, double, double, boolean) } * to draw clockwise.

* * @param cX The x-coordinate of the oval center. * @param cY The y-coordinate of the oval center. * @param endX The end X coordinate. * @param endY The end Y coordinate. */ public void arcTo(float cX, float cY, float endX, float endY) { arcTo(cX, cY, endX, endY, false); } /** * Adds an arc to the path. This method uses an approximation of an arc using * a cubic path. It is not a precise arc. * @param cX The x-coordinate of the oval center. * @param cY The y-coordinate of the oval center. * @param endX The end X coordinate. * @param endY The end Y coordinate. * @param clockwise If true, the arc is drawn clockwise around the center point. */ public void arcTo(float cX, float cY, float endX, float endY, boolean clockwise){ if ( pointSize < 2 ){ throw new RuntimeException("Cannot add arc to path if it doesn't already have a starting point."); } float startX = points[pointSize-2]; float startY = points[pointSize-1]; float dx = endX-cX; float dy = endY-cY; double r2 = Math.sqrt(dx*dx+dy*dy); double dx1 = startX-cX; double dy1 = startY-cY; double r1 = Math.sqrt(dx1*dx1+dy1*dy1); if (Math.abs(r1-r2) > 1) { Log.e(new RuntimeException("arcTo() called with start and end points that don't lie on the same arc r1="+r1+", r2="+r2)); } Ellipse e = new Ellipse(); Ellipse.initWithBounds(e, cX-r2, cY-r2, r2*2, r2*2); double startAngle = e.getAngleAtPoint(startX, startY); double endAngle = e.getAngleAtPoint(endX, endY); double sweepAngle = endAngle-startAngle; if (clockwise && sweepAngle > 0) { sweepAngle = -sweepAngle; } else if (!clockwise && sweepAngle > 0) { sweepAngle = 2*Math.PI-sweepAngle; } arc(cX-r2, cY-r2, r2*2, r2*2, -startAngle, sweepAngle, true); lineTo(endX, endY); } /** * Adds an arc to the path. This method uses an approximation of an arc using * a cubic path. It is not a precise arc. *

Note: The arc is drawn counter-clockwise around the center point. See {@link #arcTo(double, double, double, double, boolean) } * to draw clockwise.

* @param cX The x-coordinate of the oval center. * @param cY The y-coordinate of the oval center. * @param endX The end X coordinate. * @param endY The end Y coordinate. */ public void arcTo(double cX, double cY, double endX, double endY) { arcTo(cX, cY, endX, endY, false); } /** * Adds an arc to the path. This method uses an approximation of an arc using * a cubic path. It is not a precise arc. * @param cX The x-coordinate of the oval center. * @param cY The y-coordinate of the oval center. * @param endX The end X coordinate. * @param endY The end Y coordinate. * @param clockwise If true, the arc is drawn clockwise around the center point. * */ public void arcTo(double cX, double cY, double endX, double endY, boolean clockwise){ arcTo((float)cX, (float)cY, (float)endX, (float)endY, clockwise); } /** * Closes the current subpath by drawing a line back to the point of the * last moveTo, unless the path is already closed. */ public void closePath() { if (typeSize == 0 || types[typeSize - 1] != PathIterator.SEG_CLOSE) { checkBuf(0, true); types[typeSize++] = PathIterator.SEG_CLOSE; dirty = true; } } /** * Appends the segments of a Shape to the path. If connect is * {@literal true}, the new path segments are connected to the existing one * with a line. The winding rule of the Shape is ignored. * * @param shape the shape (null not permitted). * @param connect whether to connect the new shape to the existing path. */ public void append(Shape shape, boolean connect) { if (shape.getClass() == GeneralPath.class) { Iterator it = createIteratorFromPool((GeneralPath)shape, null); try { append(it, connect); } finally { recycle(it); } } else { PathIterator p = shape.getPathIterator(); append(p, connect); } dirty = true; } /** * Appends the segments of a PathIterator to this GeneralPath. Optionally, * the initial {@link PathIterator#SEG_MOVETO} segment of the appended path * is changed into a {@link PathIterator#SEG_LINETO} segment. * * @param path the PathIterator specifying which segments shall be appended * (null not permitted). * @param connect {@literal true} for substituting the initial * {@link PathIterator#SEG_MOVETO} segment by a * {@link PathIterator#SEG_LINETO}, or false for not performing any * substitution. If this {@code GeneralPath} is currently empty, connect is * assumed to be {@literal false}, thus leaving the initial * {@link PathIterator#SEG_MOVETO} unchanged. */ public void append(PathIterator path, boolean connect) { float coords[] = createFloatArrayFromPool(6);//new float[6]; append(path, connect, coords); recycle(coords); } private void append(PathIterator path, boolean connect, float[] tmpCoordsBuf) { float coords[] = tmpCoordsBuf; while (!path.isDone()) { switch (path.currentSegment(coords)) { case PathIterator.SEG_MOVETO: if (!connect || typeSize == 0) { moveTo(coords[0], coords[1]); break; } if (types[typeSize - 1] != PathIterator.SEG_CLOSE && points[pointSize - 2] == coords[0] && points[pointSize - 1] == coords[1]) { break; } // NO BREAK; case PathIterator.SEG_LINETO: lineTo(coords[0], coords[1]); break; case PathIterator.SEG_QUADTO: quadTo(coords[0], coords[1], coords[2], coords[3]); break; case PathIterator.SEG_CUBICTO: curveTo(coords[0], coords[1], coords[2], coords[3], coords[4], coords[5]); break; case PathIterator.SEG_CLOSE: closePath(); break; } path.next(); connect = false; } dirty = true; } /** * Returns the current appending point of the path. * * @return 2-element array of the form {@code [x,y]} representing {@code x} * and {@code y} coordinate of the current appending point of the path.. */ public float[] getCurrentPoint() { if (typeSize == 0) { return null; } float[] out = new float[2]; getCurrentPoint(out); return out; } /** * Sets the coordinates of the given point to the current point in the path. * * @param point Out parameter. Will be filled with the coords of the current point. */ public void getCurrentPoint(float[] point) { if (typeSize == 0) { throw new RuntimeException("Cannot get point because the size of this command is 0"); } int j = pointSize - 2; if (types[typeSize - 1] == PathIterator.SEG_CLOSE) { for (int i = typeSize - 2; i > 0; i--) { int type = types[i]; if (type == PathIterator.SEG_MOVETO) { break; } j -= pointShift[type]; } } point[0] = points[j]; point[1] = points[j+1]; //return new float[]{points[j], points[j + 1]}; } /** * Resets the path. All points and segments are destroyed. */ public void reset() { typeSize = 0; pointSize = 0; dirty = true; } /** * Returns the path's bounding box, in float precision. * * @return 4-element array of the form {@code [x, y, width, height]}. */ public float[] getBounds2D() { float[] out = new float[4]; getBounds2D(out); return out; } /** * Sets the 4-element array to the bounding box coordinates of the path. x, y, width, height. * @param out 4-element float[] array. */ public void getBounds2D(float[] out) { float rx1, ry1, rx2, ry2; if (pointSize == 0) { rx1 = ry1 = rx2 = ry2 = 0.0f; } else { int i = pointSize - 1; ry1 = ry2 = points[i--]; rx1 = rx2 = points[i--]; while (i > 0) { float y = points[i--]; float x = points[i--]; if (x < rx1) { rx1 = x; } else if (x > rx2) { rx2 = x; } if (y < ry1) { ry1 = y; } else if (y > ry2) { ry2 = y; } } } out[0] = rx1; out[1] = ry1; out[2] = rx2-rx1; out[3] = ry2-ry1; } /** * Returns the path's bounding box. * * @return The bounding box of the path. */ public Rectangle getBounds() { // NOTE (SJH20180614): If the path contains bezier curves, may be larger than drawn bounds. // See note in getBounds(Rectangle) for more details. float[] r = getBounds2D(); int x1 = (int)Math.floor(r[0]); int y1 = (int)Math.floor(r[1]); int x2 = (int)Math.ceil(r[0]+r[2]); int y2 = (int)Math.ceil(r[1]+r[3]); return new Rectangle(x1, y1, x2-x1, y2-y1); } /** * Sets the coordinates of the provided rectangle to the bounding box of this path. * @param out */ public void getBounds(Rectangle out) { // NOTE (SJH20180614): If the path contains bezier curves, this bounds // may be much larger than the actual drawn bounds because it includes // the control points in the bounds (and control points are not actually // drawn. // We can get an accurate bounds for the bezier curves using BezierCurve.getBoundingRect() // but this is a relatively expensive operation as it must solve cubic or quadratic // equations for each curve. // This this method is used inside the Graphics clipping functionality // we need to make sure it's fast. float rx1, ry1, rx2, ry2; if (pointSize == 0) { rx1 = ry1 = rx2 = ry2 = 0.0f; } else { int i = pointSize - 1; ry1 = ry2 = points[i--]; rx1 = rx2 = points[i--]; while (i > 0) { float y = points[i--]; float x = points[i--]; if (x < rx1) { rx1 = x; } else if (x > rx2) { rx2 = x; } if (y < ry1) { ry1 = y; } else if (y > ry2) { ry2 = y; } } } int x1 = (int)Math.floor(rx1); int y1 = (int)Math.floor(ry1); int x2 = (int)Math.ceil(rx2); int y2 = (int)Math.ceil(ry2); out.setX(x1); out.setY(y1); out.setWidth(x2-x1); out.setHeight(y2-y1); } /** * Checks to see if this path is a rectangle. * @return True if this path forms a rectangle. False otherwise. */ public boolean isRectangle() { // NOTE (SJH20180614): This is used extensively in clipping. We can probably // do this more efficiently without needing to call getBounds() float[] tmpPointsBuf = createFloatArrayFromPool(6); boolean[] tmpCornersBuf = createBoolArrayFromPool(4); Iterator it = createIteratorFromPool(this, null); Rectangle bounds = createRectFromPool(); try { getBounds(bounds); if (tmpPointsBuf.length != 6) { throw new RuntimeException("points buffer must be length 6"); } float[] buf = tmpPointsBuf; if (tmpCornersBuf.length != 4) { throw new RuntimeException("corners buffer must be length 4"); } boolean[] corners = tmpCornersBuf; int prevX = 0; int prevY = 0; while ( !it.isDone() ){ int type = it.currentSegment(buf); // Rectangulars only support moves, lines, and closes if ( type != PathIterator.SEG_CLOSE && type != PathIterator.SEG_LINETO && type != PathIterator.SEG_MOVETO ){ return false; } // Get the current point int x = (int)buf[0]; int y = (int)buf[1]; // Make sure there are no diagonal lines if ( type == PathIterator.SEG_LINETO && !(x == prevX || y == prevY )){ return false; } // Make sure point is on the perimeter. if ( x != bounds.getX() && y != bounds.getY() && x != bounds.getX()+bounds.getWidth() && y != bounds.getY()+bounds.getHeight() ){ return false; } // Make sure that all corners are accounted for. for ( int i=0; i<4; i++){ if ( corners[i] ){ continue; } switch (i){ case 0: corners[i] = (x == bounds.getX() && y == bounds.getY()); break; case 1: corners[i] = (x == bounds.getX()+bounds.getWidth() && y == bounds.getY()); break; case 2: corners[i] = (x == bounds.getX()+bounds.getWidth() && y == bounds.getY() + bounds.getHeight()); break; case 3: corners[i] = (x== bounds.getX() && y == bounds.getY()+bounds.getHeight()); break; } } prevX = x; prevY = y; it.next(); } return corners[0] && corners[1] && corners[2] && corners[3]; } finally { recycle(tmpPointsBuf); recycle(tmpCornersBuf); recycle(it); recycle(bounds); } } /** * {{@inheritDoc}} */ public PathIterator getPathIterator() { return new Iterator(this); } /** * {{@inheritDoc}} */ public PathIterator getPathIterator(Transform m) { Iterator out = (Iterator) getPathIterator(); out.transform = m; return out; } /** * Returns a shape formed by transforming the current shape with the provided * transform. *

Note: If {@link com.codename1.ui.Transform#isSupported} is false, this may throw a RuntimeException.

* @param m The transform to be used to transform the shape. * @return The transformed shape. */ public Shape createTransformedShape(Transform m){ GeneralPath out = new GeneralPath(); out.setPath(this, m); return out; } /** * Sets this path to be identical to the provided path {@code p} with the given * Transform {@code t} applied to it. * @param p The path to copy. * @param t The transform to apply to all points in the path. */ public void setPath(GeneralPath p, Transform t) { dirty = true; typeSize = p.typeSize; pointSize = p.pointSize; rule = p.rule; if (points == null || points.length < pointSize) { points = new float[pointSize]; } if (types == null || types.length < typeSize) { types = new byte[typeSize]; } System.arraycopy(p.types, 0, types, 0, typeSize); if (t == null || t.isIdentity()) { System.arraycopy(p.points, 0, points, 0, pointSize); } else { t.transformPoints(2, p.points, 0, points, 0, pointSize / 2); } } /** * Sets this path to be a rectangle with the provided bounds, but with * the given transform applied to it. * @param r Rectangle to copy. * @param t The transform to apply to the points in in {@code r}. */ public void setRect(Rectangle r, Transform t) { reset(); int x = r.getX(); int y = r.getY(); Dimension size = r.getSize(); int w = size.getWidth(); int h = size.getHeight(); if (t == null) { moveTo(x, y); lineTo(x + w, y); lineTo(x + w, y + h); lineTo(x, y+ h); closePath(); } else { float[] pointBuffer = createFloatArrayFromPool(6); try { pointBuffer[0] = x; pointBuffer[1] = y; pointBuffer[2] = 0; t.transformPoint(pointBuffer, pointBuffer); moveTo(pointBuffer[0], pointBuffer[1]); pointBuffer[0] = x+w; pointBuffer[1] = y; pointBuffer[2] = 0; t.transformPoint(pointBuffer, pointBuffer); lineTo(pointBuffer[0], pointBuffer[1]); pointBuffer[0] = x+w; pointBuffer[1] = y+h; pointBuffer[2] = 0; t.transformPoint(pointBuffer, pointBuffer); lineTo(pointBuffer[0], pointBuffer[1]); pointBuffer[0] = x; pointBuffer[1] = y+h; pointBuffer[2] = 0; t.transformPoint(pointBuffer, pointBuffer); lineTo(pointBuffer[0], pointBuffer[1]); closePath(); } finally { recycle(pointBuffer); } } } /** * Sets this path to be a copy of the provided shape, but with the provided * transform applied to it. * @param s The shape to copy. * @param t The transform to apply to all points in the shape. */ public void setShape(Shape s, Transform t) { if (s.getClass() == GeneralPath.class) { setPath((GeneralPath)s, t); } else if (s.getClass() == Rectangle.class) { setRect((Rectangle)s, t); } else { reset(); append(s.getPathIterator(t), false); } } /** * Sets the current path to the intersection of itself and the provided rectangle. * @param rect The rectangle to intersect with this path. * @return True if {@code rect} intersects the current path. False otherwise. If there is no intersection, the * path will be reset to be empty. */ public boolean intersect(Rectangle rect) { GeneralPath intersectionScratchPath = createPathFromPool(); try { Shape result = ShapeUtil.intersection(rect, this, intersectionScratchPath); if (result != null) { this.setPath(intersectionScratchPath, null); return true; } reset(); return false; } finally { recycle(intersectionScratchPath); } } public boolean intersect(int x, int y, int w, int h) { Rectangle r = createRectFromPool(); try { r.setBounds(x, y, w, h); return intersect(r); } finally { recycle(r); } } /** * Transforms the current path in place using the given transform. * @param m The transform to apply to the path. */ public void transform(Transform m) { if (m != null && !m.isIdentity()) { m.transformPoints(2, points, 0, points, 0, pointSize / 2 ); } } /** * Resets this path to be the intersection of itself with the given shape. Note that only * {@link com.codename1.ui.geom.Rectangle}s are current supported. If you pass any other * shape, it will throw a RuntimeException. *

Note: If {@link com.codename1.ui.TransformisSupported} is false, this will throw a Runtime Exception

* @param shape The shape to intersect with the current shape. */ public void intersect(Shape shape) { //Log.p("Start intersect"); if ( !(shape instanceof Rectangle) ){ throw new RuntimeException("GeneralPath.intersect() only supports Rectangles"); } intersect((Rectangle)shape); } /** * {{@inheritDoc}} */ public Shape intersection(Rectangle rect){ Shape out = ShapeUtil.intersection(rect, this); if (out == null) { return new Rectangle(rect.getX(), rect.getY(), 0, 0); } return out; } /** * Checks cross count according to path rule to define is it point inside shape or not. * @param cross - the point cross count * @return true if point is inside path, or false otherwise */ boolean isInside(int cross) { if (rule == WIND_NON_ZERO) { return ShapeUtil.isInsideNonZero(cross); } return ShapeUtil.isInsideEvenOdd(cross); } /** * Checks if the given point is contained in the current shape. * @param x The x coordinate to check * @param y The y coordinate to check * @return True if the point is inside the shape. */ public boolean contains(float x, float y) { return isInside(ShapeUtil.crossShape(this, x, y)); } /** * {{@inheritDoc}} */ public boolean contains(int x, int y){ return contains((float)x, (float)y); } /** * * @author shannah */ static class ShapeUtil { /** * Generates the intersection of a given shape and a given rectangle. Only supported convex polygons. * * @param r A rectangle. * @param s A shape * @return The shape that is the intersected area of the shape and * rectangle. */ static Shape intersection(Rectangle r, Shape s) { return intersection(r, s, new GeneralPath()); } private static Shape intersection(Rectangle r, Shape s, GeneralPath out) { if (r.getWidth() == 0 || r.getHeight() == 0) { out.setRect(r, null); return out; } Rectangle2D rect2D = null; Shape segmentedShape = segmentShape(r, s); Iterator it = createIteratorFromPool((GeneralPath)segmentedShape, null); //GeneralPath out = new GeneralPath(); float[] buf = createFloatArrayFromPool(6);//new float[6]; try { boolean started = false; float x1 = r.getX(); float x2 = r.getX() + r.getWidth(); float y1 = r.getY(); float y2 = r.getY() + r.getHeight(); float minX = -1; float minY = -1; float maxX = -1; float maxY = -1; float prevX=0; float prevY=0; double origPrevX=0; double origPrevY=0; BezierCurve curve = null; double epsilon = 0.01; while (!it.isDone()) { int type = it.currentSegment(buf); switch (type) { case PathIterator.SEG_CLOSE: //System.out.println("Closing path"); out.closePath(); break; case PathIterator.SEG_CUBICTO: case PathIterator.SEG_QUADTO: if (rect2D == null) { rect2D = new Rectangle2D(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } curve = type==PathIterator.SEG_QUADTO ? new BezierCurve(origPrevX, origPrevY, buf[0], buf[1], buf[2], buf[3]) : new BezierCurve(origPrevX, origPrevY, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]); //Point2D curveStart = curve.getStartPoint(); Point2D curveEnd = curve.getEndPoint(); Rectangle2D boundingRect = curve.getBoundingRect(); if (!started || (boundingRect.getX() < minX)) { minX = (float)boundingRect.getX(); } if (!started || (boundingRect.getX() + boundingRect.getWidth() > maxX)) { maxX = (float)(boundingRect.getX() + boundingRect.getWidth()); } if (!started || (boundingRect.getY() < minY)) { minY = (float)(boundingRect.getY()); } if (!started || (boundingRect.getY() + boundingRect.getHeight()> maxY)) { maxY = (float)(boundingRect.getY() + boundingRect.getHeight()); } if (rect2D.contains(curve.x(0.5), curve.y(0.5))) { // It is fully inside, we can just add it to the out path curve.addToPath(out, false); prevX = (float)curveEnd.getX(); prevY = (float)curveEnd.getY(); origPrevX = curveEnd.getX(); origPrevY = curveEnd.getY(); started = true; } else { // It is fully outside. // We will simply draw a line on the edge of the rectangle // border // Store end point of shadow lines into (buf[0], buf[1]) if (curveEnd.getX() < x1) { buf[0] = x1; } else if (curveEnd.getX() > x2) { buf[0] = x2; } else { buf[0] = (float)curveEnd.getX(); } if (curveEnd.getY() < y1) { buf[1] = y1; } else if (curveEnd.getY() > y2) { buf[1] = y2; } else { buf[1] = (float)curveEnd.getY(); } // Since the curve was segmented on the rect, the starting point // of the curve must also be on the edge of the rectangle. if (Math.abs(buf[0]-prevX) < epsilon || Math.abs(buf[1]-prevY) < epsilon) { // Same edge.. we can just do a single line out.lineTo(buf[0], buf[1]); } else { // Different edge. We can't do a single line. if (Math.abs(buf[0]-x1) < epsilon) { out.lineTo(x1, prevY); out.lineTo(buf[0], buf[1]); } else if (Math.abs(buf[0]-x2) < epsilon) { out.lineTo(x2, prevY); out.lineTo(buf[0], buf[1]); } else if (Math.abs(buf[1]-y1) < epsilon) { out.lineTo(prevX, y1); out.lineTo(buf[0], buf[1]); } else if (Math.abs(buf[1]-y2) < epsilon) { out.lineTo(prevX, y2); out.lineTo(buf[0], buf[1]); } else { System.out.println("buf="+Arrays.toString(buf)); System.out.println("Curve: "+curve); System.out.println("Rect: "+rect2D); System.out.println("type: "+type); throw new RuntimeException("Unexpected shape segmentation on curve-"); } } prevX = buf[0]; prevY = buf[1]; origPrevX = curveEnd.getX(); origPrevY = curveEnd.getY(); started = true; } break; case PathIterator.SEG_MOVETO: case PathIterator.SEG_LINETO: origPrevX = buf[0]; origPrevY = buf[1]; if (buf[0] < x1) { buf[0] = x1; } else if (buf[0] > x2) { buf[0] = x2; } if (buf[1] < y1) { buf[1] = y1; } else if (buf[1] > y2) { buf[1] = y2; } if (!started || (buf[0] < minX)) { minX = buf[0]; } if (!started || (buf[0] > maxX)) { maxX = buf[0]; } if (!started || (buf[1] < minY)) { minY = buf[1]; } if (!started || (buf[1] > maxY)) { maxY = buf[1]; } if (type == PathIterator.SEG_MOVETO) { //System.out.println("Moving to "+buf[0]+","+buf[1]); out.moveTo(buf[0], buf[1]); } else { // type == PathITerator.SEG_LINETO if ( prevX != buf[0] || prevY != buf[1]){ //System.out.println("Line to "+buf[0]+","+buf[1]); out.lineTo(buf[0], buf[1]); } } prevX = buf[0]; prevY = buf[1]; started = true; //count++; break; default: throw new RuntimeException("Unsupported segment type for intersection "+type); } it.next(); } if (maxX - minX <= 1f || maxY - minY <= 1f) { return null; } return out; } finally { recycle(it); recycle(buf); } } /** * Segments a given shape so that all points of the shape that intersect the * provided rectangle edges are nodes of the shape path. This operation * makes it easier to form the intersection. * * Only supports convex polygons. * * @param r A rectangle. * @param s A shape * @return A shape that is identical to the input shape except that it may * include additional path segments so that all points of intersection are * start/end points of a segment. */ static Shape segmentShape(Rectangle r, Shape s) { return segmentShape(r, s, new GeneralPath()); } private static GeneralPath segmentShape(Rectangle r, Shape s, GeneralPath out) { Rectangle2D rect2D = null; java.util.List curveSegments = null; BezierCurve curve = null; GeneralPath tmpGeneralPath = null; if (s.getClass() != GeneralPath.class) { tmpGeneralPath = createPathFromPool(); tmpGeneralPath.setShape(s, null); s = tmpGeneralPath; } float[] tmp = null; Iterator it = createIteratorFromPool((GeneralPath)s, null); //GeneralPath out = new GeneralPath(); float[] buf = createFloatArrayFromPool(6); // buffer to hold segment coordinates from PathIterator.currentSegment float[] curr = createFloatArrayFromPool(2); // Placeholder for current point float[] prev = createFloatArrayFromPool(2); // Placeholder for previous point float[] mark = createFloatArrayFromPool(2); // Placeholder for the moveTo point //float[] buf4 = new float[4]; // Reusable buffer to hold two points. float[] intersects = createFloatArrayFromPool(9); try { float prevX = -1; // Placeholder for previous X coord. float prevY = -1; // Placeholder for previous Y coord. float currX = 0; // Placeholder for current X coord. float currY = 0; // Placeholder for current Y coord. //float[] intersects = null; // Placeholder for intersection points while (!it.isDone()) { int type = it.currentSegment(buf); switch (type) { case PathIterator.SEG_MOVETO: // Move to segment is transferred straight through prevX = prev[0] = mark[0] = buf[0]; prevY = prev[1] = mark[1] = buf[1]; out.moveTo(prevX, prevY); //System.out.println("Moving to "+prevX+","+prevY); break; case PathIterator.SEG_QUADTO: if (rect2D == null) { rect2D = new Rectangle2D(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } currX = curr[0] = buf[2]; currY = curr[1] = buf[3]; curve = new BezierCurve(prevX, prevY, buf[0], buf[1], currX, currY); if (curveSegments == null) { curveSegments = new ArrayList(); } else { curveSegments.clear(); } curve.segment(rect2D, curveSegments); for (BezierCurve segment : curveSegments) { segment.addToPath(out, true); } prevX = currX; prevY = currY; tmp = curr; curr = prev; prev = tmp; break; case PathIterator.SEG_CUBICTO: if (rect2D == null) { rect2D = new Rectangle2D(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } currX = curr[0] = buf[4]; currY = curr[1] = buf[5]; curve = new BezierCurve(prevX, prevY, buf[0], buf[1], buf[2], buf[3], currX, currY); if (curveSegments == null) { curveSegments = new ArrayList(); } else { curveSegments.clear(); } curve.segment(rect2D, curveSegments); for (BezierCurve segment : curveSegments) { segment.addToPath(out, true); } // Set current position to prev for next iteration. prevX = currX; prevY = currY; tmp = curr; curr = prev; prev = tmp; break; case PathIterator.SEG_LINETO: // Line Segment may need to be partitioned if it crosses // an edge of the rectangle. currX = curr[0] = buf[0]; currY = curr[1] = buf[1]; // Check if line intersects rectangle intersectLineWithRectAsHash(prevX, prevY, currX, currY, r, intersects); //System.out.println("Looking for intersections between "+prevX+","+prevY+" and "+currX+","+currY); //System.out.println("Intersects: "+intersects[0]+", "+intersects[1]+" "+intersects[2]+","+intersects[3]); if (intersects[8] >= 1) { int num = (int)intersects[8]; int len = num*2; for ( int i=0; i= 1) { int num = (int)intersects[8]; int len = num*2; for ( int i=0; i minY && ry1 < maxY ){ num++; x[i++] = ry1; //out[i++] = ry1; } if ( ry2 > minY && ry2 < maxY ){ num++; x[i++] = ry2; //out[i++] = ry2; } Arrays.sort(x, 0, num); if ( y1 <= y2 ){ for ( i=0; i minX && rx1 < maxX ){ num++; x[i++] = rx1; //out[i++] = y1; } if ( rx2 > minX && rx2 < maxX ){ num++; x[i++] = rx2; //out[i++] = y1; } Arrays.sort(x, 0, num); if ( x1 <= x2 ){ for ( i=0; i minX && rx1 < maxX ){ num++; x[i] = rx1; //y[i] = y1+(rx1-x1)*m; i++; } if ( rx2 > minX && rx2 < maxX ){ num++; x[i] = rx2; //y[i++] = y1+(rx2-x1)*m; i++; } if ( ry1 > minY && ry1 < maxY ){ num++; x[i] = x1+(ry1-y1)/m; //out[i++] = ry1; i++; } if ( ry2 > minY && ry2 < maxY ){ num++; x[i] = x1+(ry2-y1)/m; //out[i++] = ry2; i++; } Arrays.sort(x, 0, num); if ( x1 < x2 ){ for ( i=0; iROOT_DELTA
they are double */ static final double ROOT_DELTA = 1E-10; /** * Rectangle cross segment */ public static final int CROSSING = 255; /** * Unknown crossing result */ static final int UNKNOWN = 254; /** * Solves quadratic equation * @param eqn - the coefficients of the equation * @param res - the roots of the equation * @return a number of roots */ public static int solveQuad(double eqn[], double res[]) { double a = eqn[2]; double b = eqn[1]; double c = eqn[0]; int rc = 0; if (a == 0.0) { if (b == 0.0) { return -1; } res[rc++] = -c / b; } else { double d = b * b - 4.0 * a * c; // d < 0.0 if (d < 0.0) { return 0; } d = Math.sqrt(d); res[rc++] = (- b + d) / (a * 2.0); // d != 0.0 if (d != 0.0) { res[rc++] = (- b - d) / (a * 2.0); } } return fixRoots(res, rc); } /** * Solves cubic equation * @param eqn - the coefficients of the equation * @param res - the roots of the equation * @return a number of roots */ public static int solveCubic(double eqn[], double res[]) { double d = eqn[3]; if (d == 0) { return solveQuad(eqn, res); } double a = eqn[2] / d; double b = eqn[1] / d; double c = eqn[0] / d; int rc = 0; double Q = (a * a - 3.0 * b) / 9.0; double R = (2.0 * a * a * a - 9.0 * a * b + 27.0 * c) / 54.0; double Q3 = Q * Q * Q; double R2 = R * R; double n = - a / 3.0; if (R2 < Q3) { double t = MathUtil.acos(R / Math.sqrt(Q3)) / 3.0; double p = 2.0 * Math.PI / 3.0; double m = -2.0 * Math.sqrt(Q); res[rc++] = m * Math.cos(t) + n; res[rc++] = m * Math.cos(t + p) + n; res[rc++] = m * Math.cos(t - p) + n; } else { // Debug.println("R2 >= Q3 (" + R2 + "/" + Q3 + ")"); double A = MathUtil.pow(Math.abs(R) + Math.sqrt(R2 - Q3), 1.0 / 3.0); if (R > 0.0) { A = -A; } // if (A == 0.0) { if (-ROOT_DELTA < A && A < ROOT_DELTA) { res[rc++] = n; } else { double B = Q / A; res[rc++] = A + B + n; // if (R2 == Q3) { double delta = R2 - Q3; if (-ROOT_DELTA < delta && delta < ROOT_DELTA) { res[rc++] = - (A + B) / 2.0 + n; } } } return fixRoots(res, rc); } /** * Excludes double roots. Roots are double if they lies enough close with each other. * @param res - the roots * @param rc - the roots count * @return new roots count */ static int fixRoots(double res[], int rc) { int tc = 0; for(int i = 0; i < rc; i++) { out: { for(int j = i + 1; j < rc; j++) { if (isZero(res[i] - res[j])) { break out; } } res[tc++] = res[i]; } } return tc; } /** * QuadCurve class provides basic functionality to find curve crossing and calculating bounds */ public static class QuadCurve { double ax, ay, bx, by; double Ax, Ay, Bx, By; public QuadCurve(double x1, double y1, double cx, double cy, double x2, double y2) { ax = x2 - x1; ay = y2 - y1; bx = cx - x1; by = cy - y1; Bx = bx + bx; // Bx = 2.0 * bx Ax = ax - Bx; // Ax = ax - 2.0 * bx By = by + by; // By = 2.0 * by Ay = ay - By; // Ay = ay - 2.0 * by } int cross(double res[], int rc, double py1, double py2) { int cross = 0; for (int i = 0; i < rc; i++) { double t = res[i]; // CURVE-OUTSIDE if (t < -DELTA || t > 1 + DELTA) { continue; } // CURVE-START if (t < DELTA) { if (py1 < 0.0 && (bx != 0.0 ? bx : ax - bx) < 0.0) { cross--; } continue; } // CURVE-END if (t > 1 - DELTA) { if (py1 < ay && (ax != bx ? ax - bx : bx) > 0.0) { cross++; } continue; } // CURVE-INSIDE double ry = t * (t * Ay + By); // ry = t * t * Ay + t * By if (ry > py2) { double rxt = t * Ax + bx; // rxt = 2.0 * t * Ax + Bx = 2.0 * t * Ax + 2.0 * bx if (rxt > -DELTA && rxt < DELTA) { continue; } cross += rxt > 0.0 ? 1 : -1; } } // for return cross; } int solvePoint(double res[], double px) { double eqn[] = {-px, Bx, Ax}; return solveQuad(eqn, res); } int solveExtrem(double res[]) { int rc = 0; if (Ax != 0.0) { res[rc++] = - Bx / (Ax + Ax); } if (Ay != 0.0) { res[rc++] = - By / (Ay + Ay); } return rc; } int addBound(double bound[], int bc, double res[], int rc, double minX, double maxX, boolean changeId, int id) { for(int i = 0; i < rc; i++) { double t = res[i]; if (t > -DELTA && t < 1 + DELTA) { double rx = t * (t * Ax + Bx); if (minX <= rx && rx <= maxX) { bound[bc++] = t; bound[bc++] = rx; bound[bc++] = t * (t * Ay + By); bound[bc++] = id; if (changeId) { id++; } } } } return bc; } } /** * CubicCurve class provides basic functionality to find curve crossing and calculating bounds */ public static class CubicCurve { double ax, ay, bx, by, cx, cy; double Ax, Ay, Bx, By, Cx, Cy; double Ax3, Bx2; public CubicCurve(double x1, double y1, double cx1, double cy1, double cx2, double cy2, double x2, double y2) { ax = x2 - x1; ay = y2 - y1; bx = cx1 - x1; by = cy1 - y1; cx = cx2 - x1; cy = cy2 - y1; Cx = bx + bx + bx; // Cx = 3.0 * bx Bx = cx + cx + cx - Cx - Cx; // Bx = 3.0 * cx - 6.0 * bx Ax = ax - Bx - Cx; // Ax = ax - 3.0 * cx + 3.0 * bx Cy = by + by + by; // Cy = 3.0 * by By = cy + cy + cy - Cy - Cy; // By = 3.0 * cy - 6.0 * by Ay = ay - By - Cy; // Ay = ay - 3.0 * cy + 3.0 * by Ax3 = Ax + Ax + Ax; Bx2 = Bx + Bx; } int cross(double res[], int rc, double py1, double py2) { int cross = 0; for (int i = 0; i < rc; i++) { double t = res[i]; // CURVE-OUTSIDE if (t < -DELTA || t > 1 + DELTA) { continue; } // CURVE-START if (t < DELTA) { if (py1 < 0.0 && (bx != 0.0 ? bx : (cx != bx ? cx - bx : ax - cx)) < 0.0) { cross--; } continue; } // CURVE-END if (t > 1 - DELTA) { if (py1 < ay && (ax != cx ? ax - cx : (cx != bx ? cx - bx : bx)) > 0.0) { cross++; } continue; } // CURVE-INSIDE double ry = t * (t * (t * Ay + By) + Cy); // ry = t * t * t * Ay + t * t * By + t * Cy if (ry > py2) { double rxt = t * (t * Ax3 + Bx2) + Cx; // rxt = 3.0 * t * t * Ax + 2.0 * t * Bx + Cx if (rxt > -DELTA && rxt < DELTA) { rxt = t * (Ax3 + Ax3) + Bx2; // rxt = 6.0 * t * Ax + 2.0 * Bx if (rxt < -DELTA || rxt > DELTA) { // Inflection point continue; } rxt = ax; } cross += rxt > 0.0 ? 1 : -1; } } //for return cross; } int solvePoint(double res[], double px) { double eqn[] = {-px, Cx, Bx, Ax}; return solveCubic(eqn, res); } int solveExtremX(double res[]) { double eqn[] = {Cx, Bx2, Ax3}; return solveQuad(eqn, res); } int solveExtremY(double res[]) { double eqn[] = {Cy, By + By, Ay + Ay + Ay}; return solveQuad(eqn, res); } int addBound(double bound[], int bc, double res[], int rc, double minX, double maxX, boolean changeId, int id) { for(int i = 0; i < rc; i++) { double t = res[i]; if (t > -DELTA && t < 1 + DELTA) { double rx = t * (t * (t * Ax + Bx) + Cx); if (minX <= rx && rx <= maxX) { bound[bc++] = t; bound[bc++] = rx; bound[bc++] = t * (t * (t * Ay + By) + Cy); bound[bc++] = id; if (changeId) { id++; } } } } return bc; } } /** * Returns how many times ray from point (x,y) cross line. */ public static int crossLine(double x1, double y1, double x2, double y2, double x, double y) { // LEFT/RIGHT/UP/EMPTY if ((x < x1 && x < x2) || (x > x1 && x > x2) || (y > y1 && y > y2) || (x1 == x2)) { return 0; } // DOWN if (y < y1 && y < y2) { } else { // INSIDE if ((y2 - y1) * (x - x1) / (x2 - x1) <= y - y1) { // INSIDE-UP return 0; } } // START if (x == x1) { return x1 < x2 ? 0 : -1; } // END if (x == x2) { return x1 < x2 ? 1 : 0; } // INSIDE-DOWN return x1 < x2 ? 1 : -1; } /** * Returns how many times ray from point (x,y) cross quard curve */ public static int crossQuad(double x1, double y1, double cx, double cy, double x2, double y2, double x, double y) { // LEFT/RIGHT/UP/EMPTY if ((x < x1 && x < cx && x < x2) || (x > x1 && x > cx && x > x2) || (y > y1 && y > cy && y > y2) || (x1 == cx && cx == x2)) { return 0; } // DOWN if (y < y1 && y < cy && y < y2 && x != x1 && x != x2) { if (x1 < x2) { return x1 < x && x < x2 ? 1 : 0; } return x2 < x && x < x1 ? -1 : 0; } // INSIDE QuadCurve c = new QuadCurve(x1, y1, cx, cy, x2, y2); double px = x - x1; double py = y - y1; double res[] = new double[3]; int rc = c.solvePoint(res, px); return c.cross(res, rc, py, py); } /** * Returns how many times ray from point (x,y) cross cubic curve */ public static int crossCubic(double x1, double y1, double cx1, double cy1, double cx2, double cy2, double x2, double y2, double x, double y) { // LEFT/RIGHT/UP/EMPTY if ((x < x1 && x < cx1 && x < cx2 && x < x2) || (x > x1 && x > cx1 && x > cx2 && x > x2) || (y > y1 && y > cy1 && y > cy2 && y > y2) || (x1 == cx1 && cx1 == cx2 && cx2 == x2)) { return 0; } // DOWN if (y < y1 && y < cy1 && y < cy2 && y < y2 && x != x1 && x != x2) { if (x1 < x2) { return x1 < x && x < x2 ? 1 : 0; } return x2 < x && x < x1 ? -1 : 0; } // INSIDE CubicCurve c = new CubicCurve(x1, y1, cx1, cy1, cx2, cy2, x2, y2); double px = x - x1; double py = y - y1; double res[] = new double[3]; int rc = c.solvePoint(res, px); return c.cross(res, rc, py, py); } /** * Returns how many times ray from point (x,y) cross path */ public static int crossPath(PathIterator p, double x, double y) { int cross = 0; double mx, my, cx, cy; mx = my = cx = cy = 0.0; double coords[] = new double[6]; while (!p.isDone()) { switch (p.currentSegment(coords)) { case PathIterator.SEG_MOVETO: if (cx != mx || cy != my) { cross += crossLine(cx, cy, mx, my, x, y); } mx = cx = coords[0]; my = cy = coords[1]; break; case PathIterator.SEG_LINETO: cross += crossLine(cx, cy, cx = coords[0], cy = coords[1], x, y); break; case PathIterator.SEG_QUADTO: cross += crossQuad(cx, cy, coords[0], coords[1], cx = coords[2], cy = coords[3], x, y); break; case PathIterator.SEG_CUBICTO: cross += crossCubic(cx, cy, coords[0], coords[1], coords[2], coords[3], cx = coords[4], cy = coords[5], x, y); break; case PathIterator.SEG_CLOSE: if (cy != my || cx != mx) { cross += crossLine(cx, cy, cx = mx, cy = my, x, y); } break; } // checks if the point (x,y) is the vertex of shape with PathIterator p if (x == cx && y == cy) { cross = 0; cy = my; break; } p.next(); } if (cy != my) { cross += crossLine(cx, cy, mx, my, x, y); } return cross; } /** * Returns how many times ray from point (x,y) cross shape */ public static int crossShape(Shape s, double x, double y) { if (!s.getBounds().contains((int)x, (int)y)) { return 0; } return crossPath(s.getPathIterator(null), x, y); } /** * Returns true if value enough small */ public static boolean isZero(double val) { return -DELTA < val && val < DELTA; } /** * Sort bound array */ static void sortBound(double bound[], int bc) { for(int i = 0; i < bc - 4; i += 4) { int k = i; for(int j = i + 4; j < bc; j += 4) { if (bound[k] > bound[j]) { k = j; } } if (k != i) { double tmp = bound[i]; bound[i] = bound[k]; bound[k] = tmp; tmp = bound[i + 1]; bound[i + 1] = bound[k + 1]; bound[k + 1] = tmp; tmp = bound[i + 2]; bound[i + 2] = bound[k + 2]; bound[k + 2] = tmp; tmp = bound[i + 3]; bound[i + 3] = bound[k + 3]; bound[k + 3] = tmp; } } } /** * Returns are bounds intersect or not intersect rectangle */ static int crossBound(double bound[], int bc, double py1, double py2) { // LEFT/RIGHT if (bc == 0) { return 0; } // Check Y coordinate int up = 0; int down = 0; for(int i = 2; i < bc; i += 4) { if (bound[i] < py1) { up++; continue; } if (bound[i] > py2) { down++; continue; } return CROSSING; } // UP if (down == 0) { return 0; } if (up != 0) { // bc >= 2 sortBound(bound, bc); boolean sign = bound[2] > py2; for(int i = 6; i < bc; i += 4) { boolean sign2 = bound[i] > py2; if (sign != sign2 && bound[i + 1] != bound[i - 3]) { return CROSSING; } sign = sign2; } } return UNKNOWN; } /** * Returns how many times rectangle stripe cross line or the are intersect */ public static int intersectLine(double x1, double y1, double x2, double y2, double rx1, double ry1, double rx2, double ry2) { // LEFT/RIGHT/UP if ((rx2 < x1 && rx2 < x2) || (rx1 > x1 && rx1 > x2) || (ry1 > y1 && ry1 > y2)) { return 0; } // DOWN if (ry2 < y1 && ry2 < y2) { } else { // INSIDE if (x1 == x2) { return CROSSING; } // Build bound double bx1, bx2; if (x1 < x2) { bx1 = x1 < rx1 ? rx1 : x1; bx2 = x2 < rx2 ? x2 : rx2; } else { bx1 = x2 < rx1 ? rx1 : x2; bx2 = x1 < rx2 ? x1 : rx2; } double k = (y2 - y1) / (x2 - x1); double by1 = k * (bx1 - x1) + y1; double by2 = k * (bx2 - x1) + y1; // BOUND-UP if (by1 < ry1 && by2 < ry1) { return 0; } // BOUND-DOWN if (by1 > ry2 && by2 > ry2) { } else { return CROSSING; } } // EMPTY if (x1 == x2) { return 0; } // CURVE-START if (rx1 == x1) { return x1 < x2 ? 0 : -1; } // CURVE-END if (rx1 == x2) { return x1 < x2 ? 1 : 0; } if (x1 < x2) { return x1 < rx1 && rx1 < x2 ? 1 : 0; } return x2 < rx1 && rx1 < x1 ? -1 : 0; } /** * Returns how many times rectangle stripe cross quad curve or the are intersect */ public static int intersectQuad(double x1, double y1, double cx, double cy, double x2, double y2, double rx1, double ry1, double rx2, double ry2) { // LEFT/RIGHT/UP ------------------------------------------------------ if ((rx2 < x1 && rx2 < cx && rx2 < x2) || (rx1 > x1 && rx1 > cx && rx1 > x2) || (ry1 > y1 && ry1 > cy && ry1 > y2)) { return 0; } // DOWN --------------------------------------------------------------- if (ry2 < y1 && ry2 < cy && ry2 < y2 && rx1 != x1 && rx1 != x2) { if (x1 < x2) { return x1 < rx1 && rx1 < x2 ? 1 : 0; } return x2 < rx1 && rx1 < x1 ? -1 : 0; } // INSIDE ------------------------------------------------------------- QuadCurve c = new QuadCurve(x1, y1, cx, cy, x2, y2); double px1 = rx1 - x1; double py1 = ry1 - y1; double px2 = rx2 - x1; double py2 = ry2 - y1; double res1[] = new double[3]; double res2[] = new double[3]; int rc1 = c.solvePoint(res1, px1); int rc2 = c.solvePoint(res2, px2); // INSIDE-LEFT/RIGHT if (rc1 == 0 && rc2 == 0) { return 0; } // Build bound -------------------------------------------------------- double minX = px1 - DELTA; double maxX = px2 + DELTA; double bound[] = new double[28]; int bc = 0; // Add roots bc = c.addBound(bound, bc, res1, rc1, minX, maxX, false, 0); bc = c.addBound(bound, bc, res2, rc2, minX, maxX, false, 1); // Add extremal points` rc2 = c.solveExtrem(res2); bc = c.addBound(bound, bc, res2, rc2, minX, maxX, true, 2); // Add start and end if (rx1 < x1 && x1 < rx2) { bound[bc++] = 0.0; bound[bc++] = 0.0; bound[bc++] = 0.0; bound[bc++] = 4; } if (rx1 < x2 && x2 < rx2) { bound[bc++] = 1.0; bound[bc++] = c.ax; bound[bc++] = c.ay; bound[bc++] = 5; } // End build bound ---------------------------------------------------- int cross = crossBound(bound, bc, py1, py2); if (cross != UNKNOWN) { return cross; } return c.cross(res1, rc1, py1, py2); } /** * Returns how many times rectangle stripe cross cubic curve or the are intersect */ public static int intersectCubic(double x1, double y1, double cx1, double cy1, double cx2, double cy2, double x2, double y2, double rx1, double ry1, double rx2, double ry2) { // LEFT/RIGHT/UP if ((rx2 < x1 && rx2 < cx1 && rx2 < cx2 && rx2 < x2) || (rx1 > x1 && rx1 > cx1 && rx1 > cx2 && rx1 > x2) || (ry1 > y1 && ry1 > cy1 && ry1 > cy2 && ry1 > y2)) { return 0; } // DOWN if (ry2 < y1 && ry2 < cy1 && ry2 < cy2 && ry2 < y2 && rx1 != x1 && rx1 != x2) { if (x1 < x2) { return x1 < rx1 && rx1 < x2 ? 1 : 0; } return x2 < rx1 && rx1 < x1 ? -1 : 0; } // INSIDE CubicCurve c = new CubicCurve(x1, y1, cx1, cy1, cx2, cy2, x2, y2); double px1 = rx1 - x1; double py1 = ry1 - y1; double px2 = rx2 - x1; double py2 = ry2 - y1; double res1[] = new double[3]; double res2[] = new double[3]; int rc1 = c.solvePoint(res1, px1); int rc2 = c.solvePoint(res2, px2); // LEFT/RIGHT if (rc1 == 0 && rc2 == 0) { return 0; } double minX = px1 - DELTA; double maxX = px2 + DELTA; // Build bound -------------------------------------------------------- double bound[] = new double[40]; int bc = 0; // Add roots bc = c.addBound(bound, bc, res1, rc1, minX, maxX, false, 0); bc = c.addBound(bound, bc, res2, rc2, minX, maxX, false, 1); // Add extrimal points rc2 = c.solveExtremX(res2); bc = c.addBound(bound, bc, res2, rc2, minX, maxX, true, 2); rc2 = c.solveExtremY(res2); bc = c.addBound(bound, bc, res2, rc2, minX, maxX, true, 4); // Add start and end if (rx1 < x1 && x1 < rx2) { bound[bc++] = 0.0; bound[bc++] = 0.0; bound[bc++] = 0.0; bound[bc++] = 6; } if (rx1 < x2 && x2 < rx2) { bound[bc++] = 1.0; bound[bc++] = c.ax; bound[bc++] = c.ay; bound[bc++] = 7; } // End build bound ---------------------------------------------------- int cross = crossBound(bound, bc, py1, py2); if (cross != UNKNOWN) { return cross; } return c.cross(res1, rc1, py1, py2); } /** * Returns how many times rectangle stripe cross path or the are intersect */ public static int intersectPath(PathIterator p, double x, double y, double w, double h) { int cross = 0; int count; double mx, my, cx, cy; mx = my = cx = cy = 0.0; double coords[] = new double[6]; double rx1 = x; double ry1 = y; double rx2 = x + w; double ry2 = y + h; while (!p.isDone()) { count = 0; switch (p.currentSegment(coords)) { case PathIterator.SEG_MOVETO: if (cx != mx || cy != my) { count = intersectLine(cx, cy, mx, my, rx1, ry1, rx2, ry2); } mx = cx = coords[0]; my = cy = coords[1]; break; case PathIterator.SEG_LINETO: count = intersectLine(cx, cy, cx = coords[0], cy = coords[1], rx1, ry1, rx2, ry2); break; case PathIterator.SEG_QUADTO: count = intersectQuad(cx, cy, coords[0], coords[1], cx = coords[2], cy = coords[3], rx1, ry1, rx2, ry2); break; case PathIterator.SEG_CUBICTO: count = intersectCubic(cx, cy, coords[0], coords[1], coords[2], coords[3], cx = coords[4], cy = coords[5], rx1, ry1, rx2, ry2); break; case PathIterator.SEG_CLOSE: if (cy != my || cx != mx) { count = intersectLine(cx, cy, mx, my, rx1, ry1, rx2, ry2); } cx = mx; cy = my; break; } if (count == CROSSING) { return CROSSING; } cross += count; p.next(); } if (cy != my) { count = intersectLine(cx, cy, mx, my, rx1, ry1, rx2, ry2); if (count == CROSSING) { return CROSSING; } cross += count; } return cross; } /** * Returns how many times rectangle stripe cross shape or the are intersect */ public static int intersectShape(Shape s, double x, double y, double w, double h) { if (!s.getBounds().intersects((int)x, (int)y, (int)w, (int)h)) { return 0; } return intersectPath(s.getPathIterator(null), x, y, w, h); } /** * Returns true if cross count correspond inside location for non zero path rule */ public static boolean isInsideNonZero(int cross) { return cross != 0; } /** * Returns true if cross count correspond inside location for even-odd path rule */ public static boolean isInsideEvenOdd(int cross) { return (cross & 1) != 0; } //} } /** * Checks to see if the set of points form a convex polygon. * if * @param xPoints The x coordinates of the polygon. * @param yPoints The y coordinates of the polygon. * @return True if the points comprise a convex polygon. */ public static boolean isConvexPolygon(float[] xPoints, float[] yPoints) { int len = xPoints.length; Pt[] p = new Pt[len]; for (int i=0; i




© 2015 - 2025 Weber Informatics LLC | Privacy Policy