All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.codename1.util.TBigDecimal Maven / Gradle / Ivy

/*
 *  Licensed to the Apache Software Foundation (ASF) under one or more
 *  contributor license agreements.  See the NOTICE file distributed with
 *  this work for additional information regarding copyright ownership.
 *  The ASF licenses this file to You under the Apache License, Version 2.0
 *  (the "License"); you may not use this file except in compliance with
 *  the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

package com.codename1.util;



/**
 * This class represents immutable arbitrary precision decimal numbers. Each
 * {@code BigDecimal} instance is represented with a unscaled arbitrary
 * precision mantissa (the unscaled value) and a scale. The value of the {@code
 * BigDecimal} is {@code unscaledValue} 10^(-{@code scale}).
 */
class TBigDecimal  {

    /**
     * The constant zero as a {@code BigDecimal}.
     */
    public static final TBigDecimal ZERO = new TBigDecimal(0, 0);

    /**
     * The constant one as a {@code BigDecimal}.
     */
    public static final TBigDecimal ONE = new TBigDecimal(1, 0);

    /**
     * The constant ten as a {@code BigDecimal}.
     */
    public static final TBigDecimal TEN = new TBigDecimal(10, 0);

    /**
     * Rounding mode where positive values are rounded towards positive infinity
     * and negative values towards negative infinity.
     *
     * @see TRoundingMode#UP
     */
    public static final int ROUND_UP = 0;

    /**
     * Rounding mode where the values are rounded towards zero.
     *
     * @see TRoundingMode#DOWN
     */
    public static final int ROUND_DOWN = 1;

    /**
     * Rounding mode to round towards positive infinity. For positive values
     * this rounding mode behaves as {@link #ROUND_UP}, for negative values as
     * {@link #ROUND_DOWN}.
     *
     * @see TRoundingMode#CEILING
     */
    public static final int ROUND_CEILING = 2;

    /**
     * Rounding mode to round towards negative infinity. For positive values
     * this rounding mode behaves as {@link #ROUND_DOWN}, for negative values as
     * {@link #ROUND_UP}.
     *
     * @see TRoundingMode#FLOOR
     */
    public static final int ROUND_FLOOR = 3;

    /**
     * Rounding mode where values are rounded towards the nearest neighbor.
     * Ties are broken by rounding up.
     *
     * @see TRoundingMode#HALF_UP
     */
    public static final int ROUND_HALF_UP = 4;

    /**
     * Rounding mode where values are rounded towards the nearest neighbor.
     * Ties are broken by rounding down.
     *
     * @see TRoundingMode#HALF_DOWN
     */
    public static final int ROUND_HALF_DOWN = 5;

    /**
     * Rounding mode where values are rounded towards the nearest neighbor.
     * Ties are broken by rounding to the even neighbor.
     *
     * @see TRoundingMode#HALF_EVEN
     */
    public static final int ROUND_HALF_EVEN = 6;

    /**
     * Rounding mode where the rounding operations throws an {@code
     * ArithmeticException} for the case that rounding is necessary, i.e. for
     * the case that the value cannot be represented exactly.
     *
     * @see TRoundingMode#UNNECESSARY
     */
    public static final int ROUND_UNNECESSARY = 7;

    /** This is the serialVersionUID used by the sun implementation. */
    private static final long serialVersionUID = 6108874887143696463L;

    /** The double closer to Log10(2). */
    private static final double LOG10_2 = 0.3010299956639812;

    /** The String representation is cached. */
    private transient String toStringImage = null;

    /** Cache for the hash code. */
    private transient int hashCode = 0;

    /**
     * An array with powers of five that fit in the type long
     * (5^0,5^1,...,5^27).
     */
    private static final TBigInteger FIVE_POW[];

    /**
     * An array with powers of ten that fit in the type long
     * (10^0,10^1,...,10^18).
     */
    private static final TBigInteger TEN_POW[];

    /**
     * An array with powers of ten that fit in the type long
     * (10^0,10^1,...,10^18).
     */
    private static final long[] LONG_TEN_POW = new long[]
    {   1L,
        10L,
        100L,
        1000L,
        10000L,
        100000L,
        1000000L,
        10000000L,
        100000000L,
        1000000000L,
        10000000000L,
        100000000000L,
        1000000000000L,
        10000000000000L,
        100000000000000L,
        1000000000000000L,
        10000000000000000L,
        100000000000000000L,
        1000000000000000000L, };


    private static final long[] LONG_FIVE_POW = new long[]
    {   1L,
        5L,
        25L,
        125L,
        625L,
        3125L,
        15625L,
        78125L,
        390625L,
        1953125L,
        9765625L,
        48828125L,
        244140625L,
        1220703125L,
        6103515625L,
        30517578125L,
        152587890625L,
        762939453125L,
        3814697265625L,
        19073486328125L,
        95367431640625L,
        476837158203125L,
        2384185791015625L,
        11920928955078125L,
        59604644775390625L,
        298023223876953125L,
        1490116119384765625L,
        7450580596923828125L, };

    private static final int[] LONG_FIVE_POW_BIT_LENGTH = new int[LONG_FIVE_POW.length];
    private static final int[] LONG_TEN_POW_BIT_LENGTH = new int[LONG_TEN_POW.length];

    private static final int BI_SCALED_BY_ZERO_LENGTH = 11;

    /**
     * An array with the first BigInteger scaled by zero.
     * ([0,0],[1,0],...,[10,0]).
     */
    private static final TBigDecimal BI_SCALED_BY_ZERO[] = new TBigDecimal[BI_SCALED_BY_ZERO_LENGTH];

    /**
     * An array with the zero number scaled by the first positive scales.
     * (0*10^0, 0*10^1, ..., 0*10^10).
     */
    private static final TBigDecimal ZERO_SCALED_BY[] = new TBigDecimal[11];

    /** An array filled with characters '0'. */
    private static final char[] CH_ZEROS = new char[100];

    static {
        // To fill all static arrays.
        int i = 0;

        for (; i < ZERO_SCALED_BY.length; i++) {
            BI_SCALED_BY_ZERO[i] = new TBigDecimal(i, 0);
            ZERO_SCALED_BY[i] = new TBigDecimal(0, i);
            CH_ZEROS[i] = '0';
        }

        for (; i < CH_ZEROS.length; i++) {
            CH_ZEROS[i] = '0';
        }
        for(int j=0; jprecision(). Note that some call to the private
     * method inplaceRound() could update this field.
     *
     * @see #precision()
     * @see #inplaceRound(TMathContext)
     */
    private transient int precision = 0;

    private TBigDecimal(long smallValue, int scale) {
        this.smallValue = smallValue;
        this.scale = scale;
        this.bitLength = bitLength(smallValue);
    }

    private TBigDecimal(int smallValue, int scale) {
        this.smallValue = smallValue;
        this.scale = scale;
        this.bitLength = bitLength(smallValue);
    }

    /**
     * Constructs a new {@code BigDecimal} instance from a string representation
     * given as a character array.
     *
     * @param in
     *            array of characters containing the string representation of
     *            this {@code BigDecimal}.
     * @param offset
     *            first index to be copied.
     * @param len
     *            number of characters to be used.
     * @throws NullPointerException
     *             if {@code in == null}.
     * @throws NumberFormatException
     *             if {@code offset < 0} or {@code len <= 0} or {@code
     *             offset+len-1 < 0} or {@code offset+len-1 >= in.length}.
     * @throws NumberFormatException
     *             if in does not contain a valid string representation of a big
     *             decimal.
     */
    public TBigDecimal(char[] in, int offset, int len) {
        int begin = offset; // first index to be copied
        int last = offset + (len - 1); // last index to be copied
        String scaleString = null; // buffer for scale
        StringBuilder unscaledBuffer; // buffer for unscaled value
        long newScale; // the new scale

        if (in == null) {
            throw new NullPointerException();
        }
        if ((last >= in.length) || (offset < 0) || (len <= 0) || (last < 0)) {
            throw new NumberFormatException();
        }
        unscaledBuffer = new StringBuilder(len);
        int bufLength = 0;
        // To skip a possible '+' symbol
        if ((offset <= last) && (in[offset] == '+')) {
            offset++;
            begin++;
        }
        int counter = 0;
        boolean wasNonZero = false;
        // Accumulating all digits until a possible decimal point
        for (; (offset <= last) && (in[offset] != '.')
        && (in[offset] != 'e') && (in[offset] != 'E'); offset++) {
            if (!wasNonZero) {
                if (in[offset] == '0') {
                    counter++;
                } else {
                    wasNonZero = true;
                }
            }

        }
        unscaledBuffer.append(in, begin, offset - begin);
        bufLength += offset - begin;
        // A decimal point was found
        if ((offset <= last) && (in[offset] == '.')) {
            offset++;
            // Accumulating all digits until a possible exponent
            begin = offset;
            for (; (offset <= last) && (in[offset] != 'e')
            && (in[offset] != 'E'); offset++) {
                if (!wasNonZero) {
                    if (in[offset] == '0') {
                        counter++;
                    } else {
                        wasNonZero = true;
                    }
                }
            }
            scale = offset - begin;
            bufLength +=scale;
            unscaledBuffer.append(in, begin, scale);
        } else {
            scale = 0;
        }
        // An exponent was found
        if ((offset <= last) && ((in[offset] == 'e') || (in[offset] == 'E'))) {
            offset++;
            // Checking for a possible sign of scale
            begin = offset;
            if ((offset <= last) && (in[offset] == '+')) {
                offset++;
                if ((offset <= last) && (in[offset] != '-')) {
                    begin++;
                }
            }
            // Accumulating all remaining digits
            scaleString = String.valueOf(in, begin, last + 1 - begin);
            // Checking if the scale is defined
            newScale = (long)scale - Integer.parseInt(scaleString);
            scale = (int)newScale;
            if (newScale != scale) {
                throw new NumberFormatException("Scale out of range.");
            }
        }
        // Parsing the unscaled value
        if (bufLength < 19) {
            smallValue = Long.parseLong(unscaledBuffer.toString());
            bitLength = bitLength(smallValue);
        } else {
            setUnscaledValue(new TBigInteger(unscaledBuffer.toString()));
        }
        precision = unscaledBuffer.length() - counter;
        if (unscaledBuffer.charAt(0) == '-') {
            precision --;
        }
    }

    /**
     * Constructs a new {@code BigDecimal} instance from a string representation
     * given as a character array.
     *
     * @param in
     *            array of characters containing the string representation of
     *            this {@code BigDecimal}.
     * @param offset
     *            first index to be copied.
     * @param len
     *            number of characters to be used.
     * @param mc
     *            rounding mode and precision for the result of this operation.
     * @throws NullPointerException
     *             if {@code in == null}.
     * @throws NumberFormatException
     *             if {@code offset < 0} or {@code len <= 0} or {@code
     *             offset+len-1 < 0} or {@code offset+len-1 >= in.length}.
     * @throws NumberFormatException
     *             if {@code in} does not contain a valid string representation
     *             of a big decimal.
     * @throws ArithmeticException
     *             if {@code mc.precision > 0} and {@code mc.roundingMode ==
     *             UNNECESSARY} and the new big decimal cannot be represented
     *             within the given precision without rounding.
     */
    public TBigDecimal(char[] in, int offset, int len, TMathContext mc) {
        this(in, offset, len);
        inplaceRound(mc);
    }

    /**
     * Constructs a new {@code BigDecimal} instance from a string representation
     * given as a character array.
     *
     * @param in
     *            array of characters containing the string representation of
     *            this {@code BigDecimal}.
     * @throws NullPointerException
     *             if {@code in == null}.
     * @throws NumberFormatException
     *             if {@code in} does not contain a valid string representation
     *             of a big decimal.
     */
    public TBigDecimal(char[] in) {
        this(in, 0, in.length);
    }

    /**
     * Constructs a new {@code BigDecimal} instance from a string representation
     * given as a character array. The result is rounded according to the
     * specified math context.
     *
     * @param in
     *            array of characters containing the string representation of
     *            this {@code BigDecimal}.
     * @param mc
     *            rounding mode and precision for the result of this operation.
     * @throws NullPointerException
     *             if {@code in == null}.
     * @throws NumberFormatException
     *             if {@code in} does not contain a valid string representation
     *             of a big decimal.
     * @throws ArithmeticException
     *             if {@code mc.precision > 0} and {@code mc.roundingMode ==
     *             UNNECESSARY} and the new big decimal cannot be represented
     *             within the given precision without rounding.
     */
    public TBigDecimal(char[] in, TMathContext mc) {
        this(in, 0, in.length);
        inplaceRound(mc);
    }

    /**
     * Constructs a new {@code BigDecimal} instance from a string
     * representation.
     *
     * @param val
     *            string containing the string representation of this {@code
     *            BigDecimal}.
     * @throws NumberFormatException
     *             if {@code val} does not contain a valid string representation
     *             of a big decimal.
     */
    public TBigDecimal(String val) {
        this(val.toCharArray(), 0, val.length());
    }

    /**
     * Constructs a new {@code BigDecimal} instance from a string
     * representation. The result is rounded according to the specified math
     * context.
     *
     * @param val
     *            string containing the string representation of this {@code
     *            BigDecimal}.
     * @param mc
     *            rounding mode and precision for the result of this operation.
     * @throws NumberFormatException
     *             if {@code val} does not contain a valid string representation
     *             of a big decimal.
     * @throws ArithmeticException
     *             if {@code mc.precision > 0} and {@code mc.roundingMode ==
     *             UNNECESSARY} and the new big decimal cannot be represented
     *             within the given precision without rounding.
     */
    public TBigDecimal(String val, TMathContext mc) {
        this(val.toCharArray(), 0, val.length());
        inplaceRound(mc);
    }

    
    /**
     * 

* Determines the number of trailing zeros in the long passed * after the {@link #lowestOneBit(long) lowest one bit}. *

* * @param lng * The long to process. * @return The number of trailing zeros. * @since 1.5 */ static int numberOfTrailingZeros(long lng) { return bitCount((lng & -lng) - 1); } /** *

* Determines the number of leading zeros in the long passed * prior to the {@link #highestOneBit(long) highest one bit}. *

* * @param lng * The long to process. * @return The number of leading zeros. * @since 1.5 */ public static int numberOfLeadingZeros(long lng) { lng |= lng >> 1; lng |= lng >> 2; lng |= lng >> 4; lng |= lng >> 8; lng |= lng >> 16; lng |= lng >> 32; return bitCount(~lng); } /** *

* Counts the number of 1 bits in the long value passed; this * is sometimes referred to as a population count. *

* * @param lng * The long value to process. * @return The number of 1 bits. * @since 1.5 */ static int bitCount(long lng) { lng = (lng & 0x5555555555555555L) + ((lng >> 1) & 0x5555555555555555L); lng = (lng & 0x3333333333333333L) + ((lng >> 2) & 0x3333333333333333L); // adjust for 64-bit integer int i = (int) ((lng >>> 32) + lng); i = (i & 0x0F0F0F0F) + ((i >> 4) & 0x0F0F0F0F); i = (i & 0x00FF00FF) + ((i >> 8) & 0x00FF00FF); i = (i & 0x0000FFFF) + ((i >> 16) & 0x0000FFFF); return i; } /** *

* The signum function for long values. This * method returns -1 for negative values, 1 for positive values and 0 for * the value 0. *

* * @param lng * The long value. * @return -1 if negative, 1 if positive otherwise 0. * @since 1.5 */ static int signum(long lng) { return (lng == 0 ? 0 : (lng < 0 ? -1 : 1)); } static char forDigit(int digit, int radix) { if (radix < 2 || radix > 36 || digit >= radix) { return '\0'; } return digit < 10 ? (char)('0' + digit) : (char)('a' + digit - 10); } /** *

* Determines the highest (leftmost) bit that is 1 and returns the value * that is the bit mask for that bit. This is sometimes referred to as the * Most Significant 1 Bit. *

* * @param i * The int to interrogate. * @return The bit mask indicating the highest 1 bit. * @since 1.5 */ static int highestOneBit(int i) { i |= (i >> 1); i |= (i >> 2); i |= (i >> 4); i |= (i >> 8); i |= (i >> 16); return (i & ~(i >>> 1)); } /** * Constructs a new {@code BigDecimal} instance from the 64bit double * {@code val}. The constructed big decimal is equivalent to the given * double. For example, {@code new BigDecimal(0.1)} is equal to {@code * 0.1000000000000000055511151231257827021181583404541015625}. This happens * as {@code 0.1} cannot be represented exactly in binary. *

* To generate a big decimal instance which is equivalent to {@code 0.1} use * the {@code BigDecimal(String)} constructor. * * @param val * double value to be converted to a {@code BigDecimal} instance. * @throws NumberFormatException * if {@code val} is infinity or not a number. */ public TBigDecimal(double val) { if (Double.isInfinite(val) || Double.isNaN(val)) { throw new NumberFormatException("Infinite or NaN"); } long bits = Double.doubleToLongBits(val); // IEEE-754 long mantisa; int trailingZeros; // Extracting the exponent, note that the bias is 1023 scale = 1075 - (int)((bits >> 52) & 0x7FFL); // Extracting the 52 bits of the mantisa. mantisa = scale == 1075 ? (bits & 0xFFFFFFFFFFFFFL) << 1 : (bits & 0xFFFFFFFFFFFFFL) | 0x10000000000000L; if (mantisa == 0) { scale = 0; precision = 1; } // To simplify all factors '2' in the mantisa if (scale > 0) { trailingZeros = Math.min(scale, numberOfTrailingZeros(mantisa)); mantisa >>>= trailingZeros; scale -= trailingZeros; } // Calculating the new unscaled value and the new scale if((bits >> 63) != 0) { mantisa = -mantisa; } int mantisaBits = bitLength(mantisa); if (scale < 0) { bitLength = mantisaBits == 0 ? 0 : mantisaBits - scale; if(bitLength < 64) { smallValue = mantisa << (-scale); } else { intVal = TBigInteger.valueOf(mantisa).shiftLeft(-scale); } scale = 0; } else if (scale > 0) { // m * 2^e = (m * 5^(-e)) * 10^e if(scale < LONG_FIVE_POW.length && mantisaBits + LONG_FIVE_POW_BIT_LENGTH[scale] < 64) { smallValue = mantisa * LONG_FIVE_POW[scale]; bitLength = bitLength(smallValue); } else { setUnscaledValue(TMultiplication.multiplyByFivePow(TBigInteger.valueOf(mantisa), scale)); } } else { // scale == 0 smallValue = mantisa; bitLength = mantisaBits; } } /** * Constructs a new {@code BigDecimal} instance from the 64bit double * {@code val}. The constructed big decimal is equivalent to the given * double. For example, {@code new BigDecimal(0.1)} is equal to {@code * 0.1000000000000000055511151231257827021181583404541015625}. This happens * as {@code 0.1} cannot be represented exactly in binary. *

* To generate a big decimal instance which is equivalent to {@code 0.1} use * the {@code BigDecimal(String)} constructor. * * @param val * double value to be converted to a {@code BigDecimal} instance. * @param mc * rounding mode and precision for the result of this operation. * @throws NumberFormatException * if {@code val} is infinity or not a number. * @throws ArithmeticException * if {@code mc.precision > 0} and {@code mc.roundingMode == * UNNECESSARY} and the new big decimal cannot be represented * within the given precision without rounding. */ public TBigDecimal(double val, TMathContext mc) { this(val); inplaceRound(mc); } /** * Constructs a new {@code BigDecimal} instance from the given big integer * {@code val}. The scale of the result is {@code 0}. * * @param val * {@code BigInteger} value to be converted to a {@code * BigDecimal} instance. */ public TBigDecimal(TBigInteger val) { this(val, 0); } /** * Constructs a new {@code BigDecimal} instance from the given big integer * {@code val}. The scale of the result is {@code 0}. * * @param val * {@code BigInteger} value to be converted to a {@code * BigDecimal} instance. * @param mc * rounding mode and precision for the result of this operation. * @throws ArithmeticException * if {@code mc.precision > 0} and {@code mc.roundingMode == * UNNECESSARY} and the new big decimal cannot be represented * within the given precision without rounding. */ public TBigDecimal(TBigInteger val, TMathContext mc) { this(val); inplaceRound(mc); } /** * Constructs a new {@code BigDecimal} instance from a given unscaled value * {@code unscaledVal} and a given scale. The value of this instance is * {@code unscaledVal} 10^(-{@code scale}). * * @param unscaledVal * {@code BigInteger} representing the unscaled value of this * {@code BigDecimal} instance. * @param scale * scale of this {@code BigDecimal} instance. * @throws NullPointerException * if {@code unscaledVal == null}. */ public TBigDecimal(TBigInteger unscaledVal, int scale) { if (unscaledVal == null) { throw new NullPointerException(); } this.scale = scale; setUnscaledValue(unscaledVal); } /** * Constructs a new {@code BigDecimal} instance from a given unscaled value * {@code unscaledVal} and a given scale. The value of this instance is * {@code unscaledVal} 10^(-{@code scale}). The result is rounded according * to the specified math context. * * @param unscaledVal * {@code BigInteger} representing the unscaled value of this * {@code BigDecimal} instance. * @param scale * scale of this {@code BigDecimal} instance. * @param mc * rounding mode and precision for the result of this operation. * @throws ArithmeticException * if {@code mc.precision > 0} and {@code mc.roundingMode == * UNNECESSARY} and the new big decimal cannot be represented * within the given precision without rounding. * @throws NullPointerException * if {@code unscaledVal == null}. */ public TBigDecimal(TBigInteger unscaledVal, int scale, TMathContext mc) { this(unscaledVal, scale); inplaceRound(mc); } /** * Constructs a new {@code BigDecimal} instance from the given int * {@code val}. The scale of the result is 0. * * @param val * int value to be converted to a {@code BigDecimal} instance. */ public TBigDecimal(int val) { this(val,0); } /** * Constructs a new {@code BigDecimal} instance from the given int {@code * val}. The scale of the result is {@code 0}. The result is rounded * according to the specified math context. * * @param val * int value to be converted to a {@code BigDecimal} instance. * @param mc * rounding mode and precision for the result of this operation. * @throws ArithmeticException * if {@code mc.precision > 0} and {@code c.roundingMode == * UNNECESSARY} and the new big decimal cannot be represented * within the given precision without rounding. */ public TBigDecimal(int val, TMathContext mc) { this(val,0); inplaceRound(mc); } /** * Constructs a new {@code BigDecimal} instance from the given long {@code * val}. The scale of the result is {@code 0}. * * @param val * long value to be converted to a {@code BigDecimal} instance. */ public TBigDecimal(long val) { this(val,0); } /** * Constructs a new {@code BigDecimal} instance from the given long {@code * val}. The scale of the result is {@code 0}. The result is rounded * according to the specified math context. * * @param val * long value to be converted to a {@code BigDecimal} instance. * @param mc * rounding mode and precision for the result of this operation. * @throws ArithmeticException * if {@code mc.precision > 0} and {@code mc.roundingMode == * UNNECESSARY} and the new big decimal cannot be represented * within the given precision without rounding. */ public TBigDecimal(long val, TMathContext mc) { this(val); inplaceRound(mc); } /* Public Methods */ /** * Returns a new {@code BigDecimal} instance whose value is equal to {@code * unscaledVal} 10^(-{@code scale}). The scale of the result is {@code * scale}, and its unscaled value is {@code unscaledVal}. * * @param unscaledVal * unscaled value to be used to construct the new {@code * BigDecimal}. * @param scale * scale to be used to construct the new {@code BigDecimal}. * @return {@code BigDecimal} instance with the value {@code unscaledVal}* * 10^(-{@code unscaledVal}). */ public static TBigDecimal valueOf(long unscaledVal, int scale) { if (scale == 0) { return valueOf(unscaledVal); } if ((unscaledVal == 0) && (scale >= 0) && (scale < ZERO_SCALED_BY.length)) { return ZERO_SCALED_BY[scale]; } return new TBigDecimal(unscaledVal, scale); } /** * Returns a new {@code BigDecimal} instance whose value is equal to {@code * unscaledVal}. The scale of the result is {@code 0}, and its unscaled * value is {@code unscaledVal}. * * @param unscaledVal * value to be converted to a {@code BigDecimal}. * @return {@code BigDecimal} instance with the value {@code unscaledVal}. */ public static TBigDecimal valueOf(long unscaledVal) { if ((unscaledVal >= 0) && (unscaledVal < BI_SCALED_BY_ZERO_LENGTH)) { return BI_SCALED_BY_ZERO[(int)unscaledVal]; } return new TBigDecimal(unscaledVal,0); } /** * Returns a new {@code BigDecimal} instance whose value is equal to {@code * val}. The new decimal is constructed as if the {@code BigDecimal(String)} * constructor is called with an argument which is equal to {@code * Double.toString(val)}. For example, {@code valueOf("0.1")} is converted to * (unscaled=1, scale=1), although the double {@code 0.1} cannot be * represented exactly as a double value. In contrast to that, a new {@code * BigDecimal(0.1)} instance has the value {@code * 0.1000000000000000055511151231257827021181583404541015625} with an * unscaled value {@code 1000000000000000055511151231257827021181583404541015625} * and the scale {@code 55}. * * @param val * double value to be converted to a {@code BigDecimal}. * @return {@code BigDecimal} instance with the value {@code val}. * @throws NumberFormatException * if {@code val} is infinite or {@code val} is not a number */ public static TBigDecimal valueOf(double val) { if (Double.isInfinite(val) || Double.isNaN(val)) { throw new NumberFormatException("Infinity or NaN"); } return new TBigDecimal(Double.toString(val)); } /** * Returns a new {@code BigDecimal} whose value is {@code this + augend}. * The scale of the result is the maximum of the scales of the two * arguments. * * @param augend * value to be added to {@code this}. * @return {@code this + augend}. * @throws NullPointerException * if {@code augend == null}. */ public TBigDecimal add(TBigDecimal augend) { int diffScale = this.scale - augend.scale; // Fast return when some operand is zero if (this.isZero()) { if (diffScale <= 0) { return augend; } if (augend.isZero()) { return this; } } else if (augend.isZero()) { if (diffScale >= 0) { return this; } } // Let be: this = [u1,s1] and augend = [u2,s2] if (diffScale == 0) { // case s1 == s2: [u1 + u2 , s1] if (Math.max(this.bitLength, augend.bitLength) + 1 < 64) { return valueOf(this.smallValue + augend.smallValue, this.scale); } return new TBigDecimal(this.getUnscaledValue().add(augend.getUnscaledValue()), this.scale); } else if (diffScale > 0) { // case s1 > s2 : [(u1 + u2) * 10 ^ (s1 - s2) , s1] return addAndMult10(this, augend, diffScale); } else {// case s2 > s1 : [(u2 + u1) * 10 ^ (s2 - s1) , s2] return addAndMult10(augend, this, -diffScale); } } private static TBigDecimal addAndMult10(TBigDecimal thisValue,TBigDecimal augend, int diffScale) { if(diffScale < LONG_TEN_POW.length && Math.max(thisValue.bitLength, augend.bitLength + LONG_TEN_POW_BIT_LENGTH[diffScale]) + 1 < 64) { return valueOf(thisValue.smallValue + augend.smallValue * LONG_TEN_POW[diffScale], thisValue.scale); } return new TBigDecimal(thisValue.getUnscaledValue().add( TMultiplication.multiplyByTenPow(augend.getUnscaledValue(),diffScale)), thisValue.scale); } /** * Returns a new {@code BigDecimal} whose value is {@code this + augend}. * The result is rounded according to the passed context {@code mc}. * * @param augend * value to be added to {@code this}. * @param mc * rounding mode and precision for the result of this operation. * @return {@code this + augend}. * @throws NullPointerException * if {@code augend == null} or {@code mc == null}. */ public TBigDecimal add(TBigDecimal augend, TMathContext mc) { TBigDecimal larger; // operand with the largest unscaled value TBigDecimal smaller; // operand with the smallest unscaled value TBigInteger tempBI; long diffScale = (long)this.scale - augend.scale; int largerSignum; // Some operand is zero or the precision is infinity if ((augend.isZero()) || (this.isZero()) || (mc.getPrecision() == 0)) { return add(augend).round(mc); } // Cases where there is room for optimizations if (this.aproxPrecision() < diffScale - 1) { larger = augend; smaller = this; } else if (augend.aproxPrecision() < -diffScale - 1) { larger = this; smaller = augend; } else {// No optimization is done return add(augend).round(mc); } if (mc.getPrecision() >= larger.aproxPrecision()) { // No optimization is done return add(augend).round(mc); } // Cases where it's unnecessary to add two numbers with very different scales largerSignum = larger.signum(); if (largerSignum == smaller.signum()) { tempBI = TMultiplication.multiplyByPositiveInt(larger.getUnscaledValue(), 10) .add(TBigInteger.valueOf(largerSignum)); } else { tempBI = larger.getUnscaledValue().subtract(TBigInteger.valueOf(largerSignum)); tempBI = TMultiplication.multiplyByPositiveInt(tempBI, 10).add(TBigInteger.valueOf(largerSignum * 9)); } // Rounding the improved adding larger = new TBigDecimal(tempBI, larger.scale + 1); return larger.round(mc); } /** * Returns a new {@code BigDecimal} whose value is {@code this - subtrahend}. * The scale of the result is the maximum of the scales of the two arguments. * * @param subtrahend * value to be subtracted from {@code this}. * @return {@code this - subtrahend}. * @throws NullPointerException * if {@code subtrahend == null}. */ public TBigDecimal subtract(TBigDecimal subtrahend) { int diffScale = this.scale - subtrahend.scale; // Fast return when some operand is zero if (this.isZero()) { if (diffScale <= 0) { return subtrahend.negate(); } if (subtrahend.isZero()) { return this; } } else if (subtrahend.isZero()) { if (diffScale >= 0) { return this; } } // Let be: this = [u1,s1] and subtrahend = [u2,s2] so: if (diffScale == 0) { // case s1 = s2 : [u1 - u2 , s1] if (Math.max(this.bitLength, subtrahend.bitLength) + 1 < 64) { return valueOf(this.smallValue - subtrahend.smallValue,this.scale); } return new TBigDecimal(this.getUnscaledValue().subtract(subtrahend.getUnscaledValue()), this.scale); } else if (diffScale > 0) { // case s1 > s2 : [ u1 - u2 * 10 ^ (s1 - s2) , s1 ] if(diffScale < LONG_TEN_POW.length && Math.max(this.bitLength, subtrahend.bitLength + LONG_TEN_POW_BIT_LENGTH[diffScale]) + 1 < 64) { return valueOf(this.smallValue - subtrahend.smallValue * LONG_TEN_POW[diffScale], this.scale); } return new TBigDecimal(this.getUnscaledValue().subtract( TMultiplication.multiplyByTenPow(subtrahend.getUnscaledValue(),diffScale)), this.scale); } else {// case s2 > s1 : [ u1 * 10 ^ (s2 - s1) - u2 , s2 ] diffScale = -diffScale; if(diffScale < LONG_TEN_POW.length && Math.max(this.bitLength + LONG_TEN_POW_BIT_LENGTH[diffScale], subtrahend.bitLength) + 1 < 64) { return valueOf(this.smallValue * LONG_TEN_POW[diffScale] - subtrahend.smallValue,subtrahend.scale); } return new TBigDecimal(TMultiplication.multiplyByTenPow(this.getUnscaledValue(), diffScale) .subtract(subtrahend.getUnscaledValue()), subtrahend.scale); } } /** * Returns a new {@code BigDecimal} whose value is {@code this - subtrahend}. * The result is rounded according to the passed context {@code mc}. * * @param subtrahend * value to be subtracted from {@code this}. * @param mc * rounding mode and precision for the result of this operation. * @return {@code this - subtrahend}. * @throws NullPointerException * if {@code subtrahend == null} or {@code mc == null}. */ public TBigDecimal subtract(TBigDecimal subtrahend, TMathContext mc) { long diffScale = subtrahend.scale - (long)this.scale; int thisSignum; TBigDecimal leftOperand; // it will be only the left operand (this) TBigInteger tempBI; // Some operand is zero or the precision is infinity if (subtrahend.isZero() || isZero() || mc.getPrecision() == 0) { return subtract(subtrahend).round(mc); } // Now: this != 0 and subtrahend != 0 if (subtrahend.aproxPrecision() < diffScale - 1) { // Cases where it is unnecessary to subtract two numbers with very different scales if (mc.getPrecision() < this.aproxPrecision()) { thisSignum = this.signum(); if (thisSignum != subtrahend.signum()) { tempBI = TMultiplication.multiplyByPositiveInt(this.getUnscaledValue(), 10) .add(TBigInteger.valueOf(thisSignum)); } else { tempBI = this.getUnscaledValue().subtract(TBigInteger.valueOf(thisSignum)); tempBI = TMultiplication.multiplyByPositiveInt(tempBI, 10) .add(TBigInteger.valueOf(thisSignum * 9)); } // Rounding the improved subtracting leftOperand = new TBigDecimal(tempBI, this.scale + 1); return leftOperand.round(mc); } } // No optimization is done return subtract(subtrahend).round(mc); } /** * Returns a new {@code BigDecimal} whose value is {@code this * * multiplicand}. The scale of the result is the sum of the scales of the * two arguments. * * @param multiplicand * value to be multiplied with {@code this}. * @return {@code this * multiplicand}. * @throws NullPointerException * if {@code multiplicand == null}. */ public TBigDecimal multiply(TBigDecimal multiplicand) { long newScale = (long)this.scale + multiplicand.scale; if (isZero() || multiplicand.isZero()) { return zeroScaledBy(newScale); } /* Let be: this = [u1,s1] and multiplicand = [u2,s2] so: * this x multiplicand = [ s1 * s2 , s1 + s2 ] */ if(this.bitLength + multiplicand.bitLength < 64) { return valueOf(this.smallValue*multiplicand.smallValue, toIntScale(newScale)); } return new TBigDecimal(this.getUnscaledValue().multiply( multiplicand.getUnscaledValue()), toIntScale(newScale)); } /** * Returns a new {@code BigDecimal} whose value is {@code this * * multiplicand}. The result is rounded according to the passed context * {@code mc}. * * @param multiplicand * value to be multiplied with {@code this}. * @param mc * rounding mode and precision for the result of this operation. * @return {@code this * multiplicand}. * @throws NullPointerException * if {@code multiplicand == null} or {@code mc == null}. */ public TBigDecimal multiply(TBigDecimal multiplicand, TMathContext mc) { TBigDecimal result = multiply(multiplicand); result.inplaceRound(mc); return result; } /** * Returns a new {@code BigDecimal} whose value is {@code this / divisor}. * As scale of the result the parameter {@code scale} is used. If rounding * is required to meet the specified scale, then the specified rounding mode * {@code roundingMode} is applied. * * @param divisor * value by which {@code this} is divided. * @param scale * the scale of the result returned. * @param roundingMode * rounding mode to be used to round the result. * @return {@code this / divisor} rounded according to the given rounding * mode. * @throws NullPointerException * if {@code divisor == null}. * @throws IllegalArgumentException * if {@code roundingMode} is not a valid rounding mode. * @throws ArithmeticException * if {@code divisor == 0}. * @throws ArithmeticException * if {@code roundingMode == ROUND_UNNECESSARY} and rounding is * necessary according to the given scale. */ public TBigDecimal divide(TBigDecimal divisor, int scale, int roundingMode) { return divide(divisor, scale, TRoundingMode.valueOf(roundingMode)); } /** * Returns a new {@code BigDecimal} whose value is {@code this / divisor}. * As scale of the result the parameter {@code scale} is used. If rounding * is required to meet the specified scale, then the specified rounding mode * {@code roundingMode} is applied. * * @param divisor * value by which {@code this} is divided. * @param scale * the scale of the result returned. * @param roundingMode * rounding mode to be used to round the result. * @return {@code this / divisor} rounded according to the given rounding * mode. * @throws NullPointerException * if {@code divisor == null} or {@code roundingMode == null}. * @throws ArithmeticException * if {@code divisor == 0}. * @throws ArithmeticException * if {@code roundingMode == RoundingMode.UNNECESSAR}Y and * rounding is necessary according to the given scale and given * precision. */ public TBigDecimal divide(TBigDecimal divisor, int scale, TRoundingMode roundingMode) { // Let be: this = [u1,s1] and divisor = [u2,s2] if (roundingMode == null) { throw new NullPointerException(); } if (divisor.isZero()) { throw new ArithmeticException("Division by zero"); } long diffScale = ((long)this.scale - divisor.scale) - scale; if(this.bitLength < 64 && divisor.bitLength < 64 ) { if(diffScale == 0) { return dividePrimitiveLongs(this.smallValue, divisor.smallValue, scale, roundingMode); } else if(diffScale > 0) { if(diffScale < LONG_TEN_POW.length && divisor.bitLength + LONG_TEN_POW_BIT_LENGTH[(int)diffScale] < 64) { return dividePrimitiveLongs(this.smallValue, divisor.smallValue*LONG_TEN_POW[(int)diffScale], scale, roundingMode); } } else { // diffScale < 0 if(-diffScale < LONG_TEN_POW.length && this.bitLength + LONG_TEN_POW_BIT_LENGTH[(int)-diffScale] < 64) { return dividePrimitiveLongs(this.smallValue*LONG_TEN_POW[(int)-diffScale], divisor.smallValue, scale, roundingMode); } } } TBigInteger scaledDividend = this.getUnscaledValue(); TBigInteger scaledDivisor = divisor.getUnscaledValue(); // for scaling of 'u2' if (diffScale > 0) { // Multiply 'u2' by: 10^((s1 - s2) - scale) scaledDivisor = TMultiplication.multiplyByTenPow(scaledDivisor, (int)diffScale); } else if (diffScale < 0) { // Multiply 'u1' by: 10^(scale - (s1 - s2)) scaledDividend = TMultiplication.multiplyByTenPow(scaledDividend, (int)-diffScale); } return divideBigIntegers(scaledDividend, scaledDivisor, scale, roundingMode); } private static TBigDecimal divideBigIntegers(TBigInteger scaledDividend, TBigInteger scaledDivisor, int scale, TRoundingMode roundingMode) { TBigInteger[] quotAndRem = scaledDividend.divideAndRemainder(scaledDivisor); // quotient and remainder // If after division there is a remainder... TBigInteger quotient = quotAndRem[0]; TBigInteger remainder = quotAndRem[1]; if (remainder.signum() == 0) { return new TBigDecimal(quotient, scale); } int sign = scaledDividend.signum() * scaledDivisor.signum(); int compRem; // 'compare to remainder' if(scaledDivisor.bitLength() < 63) { // 63 in order to avoid out of long after <<1 long rem = remainder.longValue(); long divisor = scaledDivisor.longValue(); compRem = longCompareTo(Math.abs(rem) << 1,Math.abs(divisor)); // To look if there is a carry compRem = roundingBehavior(quotient.testBit(0) ? 1 : 0, sign * (5 + compRem), roundingMode); } else { // Checking if: remainder * 2 >= scaledDivisor compRem = remainder.abs().shiftLeftOneBit().compareTo(scaledDivisor.abs()); compRem = roundingBehavior(quotient.testBit(0) ? 1 : 0, sign * (5 + compRem), roundingMode); } if (compRem != 0) { if(quotient.bitLength() < 63) { return valueOf(quotient.longValue() + compRem,scale); } quotient = quotient.add(TBigInteger.valueOf(compRem)); return new TBigDecimal(quotient, scale); } // Constructing the result with the appropriate unscaled value return new TBigDecimal(quotient, scale); } private static TBigDecimal dividePrimitiveLongs(long scaledDividend, long scaledDivisor, int scale, TRoundingMode roundingMode) { long quotient = scaledDividend / scaledDivisor; long remainder = scaledDividend % scaledDivisor; int sign = signum( scaledDividend ) * signum(scaledDivisor); if (remainder != 0) { // Checking if: remainder * 2 >= scaledDivisor int compRem; // 'compare to remainder' compRem = longCompareTo(Math.abs(remainder) << 1, Math.abs(scaledDivisor)); // To look if there is a carry quotient += roundingBehavior(((int)quotient) & 1, sign * (5 + compRem), roundingMode); } // Constructing the result with the appropriate unscaled value return valueOf(quotient, scale); } /** * Returns a new {@code BigDecimal} whose value is {@code this / divisor}. * The scale of the result is the scale of {@code this}. If rounding is * required to meet the specified scale, then the specified rounding mode * {@code roundingMode} is applied. * * @param divisor * value by which {@code this} is divided. * @param roundingMode * rounding mode to be used to round the result. * @return {@code this / divisor} rounded according to the given rounding * mode. * @throws NullPointerException * if {@code divisor == null}. * @throws IllegalArgumentException * if {@code roundingMode} is not a valid rounding mode. * @throws ArithmeticException * if {@code divisor == 0}. * @throws ArithmeticException * if {@code roundingMode == ROUND_UNNECESSARY} and rounding is * necessary according to the scale of this. */ public TBigDecimal divide(TBigDecimal divisor, int roundingMode) { return divide(divisor, scale, TRoundingMode.valueOf(roundingMode)); } /** * Returns a new {@code BigDecimal} whose value is {@code this / divisor}. * The scale of the result is the scale of {@code this}. If rounding is * required to meet the specified scale, then the specified rounding mode * {@code roundingMode} is applied. * * @param divisor * value by which {@code this} is divided. * @param roundingMode * rounding mode to be used to round the result. * @return {@code this / divisor} rounded according to the given rounding * mode. * @throws NullPointerException * if {@code divisor == null} or {@code roundingMode == null}. * @throws ArithmeticException * if {@code divisor == 0}. * @throws ArithmeticException * if {@code roundingMode == RoundingMode.UNNECESSARY} and * rounding is necessary according to the scale of this. */ public TBigDecimal divide(TBigDecimal divisor, TRoundingMode roundingMode) { return divide(divisor, scale, roundingMode); } /** * Returns a new {@code BigDecimal} whose value is {@code this / divisor}. * The scale of the result is the difference of the scales of {@code this} * and {@code divisor}. If the exact result requires more digits, then the * scale is adjusted accordingly. For example, {@code 1/128 = 0.0078125} * which has a scale of {@code 7} and precision {@code 5}. * * @param divisor * value by which {@code this} is divided. * @return {@code this / divisor}. * @throws NullPointerException * if {@code divisor == null}. * @throws ArithmeticException * if {@code divisor == 0}. * @throws ArithmeticException * if the result cannot be represented exactly. */ public TBigDecimal divide(TBigDecimal divisor) { TBigInteger p = this.getUnscaledValue(); TBigInteger q = divisor.getUnscaledValue(); TBigInteger gcd; // greatest common divisor between 'p' and 'q' TBigInteger quotAndRem[]; long diffScale = (long)scale - divisor.scale; int newScale; // the new scale for final quotient int k; // number of factors "2" in 'q' int l = 0; // number of factors "5" in 'q' int i = 1; int lastPow = FIVE_POW.length - 1; if (divisor.isZero()) { throw new ArithmeticException("Division by zero"); } if (p.signum() == 0) { return zeroScaledBy(diffScale); } // To divide both by the GCD gcd = p.gcd(q); p = p.divide(gcd); q = q.divide(gcd); // To simplify all "2" factors of q, dividing by 2^k k = q.getLowestSetBit(); q = q.shiftRight(k); // To simplify all "5" factors of q, dividing by 5^l do { quotAndRem = q.divideAndRemainder(FIVE_POW[i]); if (quotAndRem[1].signum() == 0) { l += i; if (i < lastPow) { i++; } q = quotAndRem[0]; } else { if (i == 1) { break; } i = 1; } } while (true); // If abs(q) != 1 then the quotient is periodic if (!q.abs().equals(TBigInteger.ONE)) { throw new ArithmeticException("Non-terminating decimal expansion; no exact representable decimal result."); } // The sign of the is fixed and the quotient will be saved in 'p' if (q.signum() < 0) { p = p.negate(); } // Checking if the new scale is out of range newScale = toIntScale(diffScale + Math.max(k, l)); // k >= 0 and l >= 0 implies that k - l is in the 32-bit range i = k - l; p = (i > 0) ? TMultiplication.multiplyByFivePow(p, i) : p.shiftLeft(-i); return new TBigDecimal(p, newScale); } /** * Returns a new {@code BigDecimal} whose value is {@code this / divisor}. * The result is rounded according to the passed context {@code mc}. If the * passed math context specifies precision {@code 0}, then this call is * equivalent to {@code this.divide(divisor)}. * * @param divisor * value by which {@code this} is divided. * @param mc * rounding mode and precision for the result of this operation. * @return {@code this / divisor}. * @throws NullPointerException * if {@code divisor == null} or {@code mc == null}. * @throws ArithmeticException * if {@code divisor == 0}. * @throws ArithmeticException * if {@code mc.getRoundingMode() == UNNECESSARY} and rounding * is necessary according {@code mc.getPrecision()}. */ public TBigDecimal divide(TBigDecimal divisor, TMathContext mc) { /* Calculating how many zeros must be append to 'dividend' * to obtain a quotient with at least 'mc.precision()' digits */ long traillingZeros = mc.getPrecision() + 2L + divisor.aproxPrecision() - aproxPrecision(); long diffScale = (long)scale - divisor.scale; long newScale = diffScale; // scale of the final quotient int compRem; // to compare the remainder int i = 1; // index int lastPow = TEN_POW.length - 1; // last power of ten TBigInteger integerQuot; // for temporal results TBigInteger quotAndRem[] = {getUnscaledValue()}; // In special cases it reduces the problem to call the dual method if ((mc.getPrecision() == 0) || (this.isZero()) || (divisor.isZero())) { return this.divide(divisor); } if (traillingZeros > 0) { // To append trailing zeros at end of dividend quotAndRem[0] = getUnscaledValue().multiply( TMultiplication.powerOf10(traillingZeros) ); newScale += traillingZeros; } quotAndRem = quotAndRem[0].divideAndRemainder( divisor.getUnscaledValue() ); integerQuot = quotAndRem[0]; // Calculating the exact quotient with at least 'mc.precision()' digits if (quotAndRem[1].signum() != 0) { // Checking if: 2 * remainder >= divisor ? compRem = quotAndRem[1].shiftLeftOneBit().compareTo( divisor.getUnscaledValue() ); // quot := quot * 10 + r; with 'r' in {-6,-5,-4, 0,+4,+5,+6} integerQuot = integerQuot.multiply(TBigInteger.TEN) .add(TBigInteger.valueOf(quotAndRem[0].signum() * (5 + compRem))); newScale++; } else { // To strip trailing zeros until the preferred scale is reached while (!integerQuot.testBit(0)) { quotAndRem = integerQuot.divideAndRemainder(TEN_POW[i]); if ((quotAndRem[1].signum() == 0) && (newScale - i >= diffScale)) { newScale -= i; if (i < lastPow) { i++; } integerQuot = quotAndRem[0]; } else { if (i == 1) { break; } i = 1; } } } // To perform rounding return new TBigDecimal(integerQuot, toIntScale(newScale), mc); } /** * Returns a new {@code BigDecimal} whose value is the integral part of * {@code this / divisor}. The quotient is rounded down towards zero to the * next integer. For example, {@code 0.5/0.2 = 2}. * * @param divisor * value by which {@code this} is divided. * @return integral part of {@code this / divisor}. * @throws NullPointerException * if {@code divisor == null}. * @throws ArithmeticException * if {@code divisor == 0}. */ public TBigDecimal divideToIntegralValue(TBigDecimal divisor) { TBigInteger integralValue; // the integer of result TBigInteger powerOfTen; // some power of ten TBigInteger quotAndRem[] = {getUnscaledValue()}; long newScale = (long)this.scale - divisor.scale; long tempScale = 0; int i = 1; int lastPow = TEN_POW.length - 1; if (divisor.isZero()) { throw new ArithmeticException("Division by zero"); } if ((divisor.aproxPrecision() + newScale > this.aproxPrecision() + 1L) || (this.isZero())) { /* If the divisor's integer part is greater than this's integer part, * the result must be zero with the appropriate scale */ integralValue = TBigInteger.ZERO; } else if (newScale == 0) { integralValue = getUnscaledValue().divide( divisor.getUnscaledValue() ); } else if (newScale > 0) { powerOfTen = TMultiplication.powerOf10(newScale); integralValue = getUnscaledValue().divide( divisor.getUnscaledValue().multiply(powerOfTen) ); integralValue = integralValue.multiply(powerOfTen); } else {// (newScale < 0) powerOfTen = TMultiplication.powerOf10(-newScale); integralValue = getUnscaledValue().multiply(powerOfTen).divide( divisor.getUnscaledValue() ); // To strip trailing zeros approximating to the preferred scale while (!integralValue.testBit(0)) { quotAndRem = integralValue.divideAndRemainder(TEN_POW[i]); if ((quotAndRem[1].signum() == 0) && (tempScale - i >= newScale)) { tempScale -= i; if (i < lastPow) { i++; } integralValue = quotAndRem[0]; } else { if (i == 1) { break; } i = 1; } } newScale = tempScale; } return ((integralValue.signum() == 0) ? zeroScaledBy(newScale) : new TBigDecimal(integralValue, toIntScale(newScale))); } /** * Returns a new {@code BigDecimal} whose value is the integral part of * {@code this / divisor}. The quotient is rounded down towards zero to the * next integer. The rounding mode passed with the parameter {@code mc} is * not considered. But if the precision of {@code mc > 0} and the integral * part requires more digits, then an {@code ArithmeticException} is thrown. * * @param divisor * value by which {@code this} is divided. * @param mc * math context which determines the maximal precision of the * result. * @return integral part of {@code this / divisor}. * @throws NullPointerException * if {@code divisor == null} or {@code mc == null}. * @throws ArithmeticException * if {@code divisor == 0}. * @throws ArithmeticException * if {@code mc.getPrecision() > 0} and the result requires more * digits to be represented. */ public TBigDecimal divideToIntegralValue(TBigDecimal divisor, TMathContext mc) { int mcPrecision = mc.getPrecision(); int diffPrecision = this.precision() - divisor.precision(); int lastPow = TEN_POW.length - 1; long diffScale = (long)this.scale - divisor.scale; long newScale = diffScale; long quotPrecision = diffPrecision - diffScale + 1; TBigInteger quotAndRem[] = new TBigInteger[2]; // In special cases it call the dual method if ((mcPrecision == 0) || (this.isZero()) || (divisor.isZero())) { return this.divideToIntegralValue(divisor); } // Let be: this = [u1,s1] and divisor = [u2,s2] if (quotPrecision <= 0) { quotAndRem[0] = TBigInteger.ZERO; } else if (diffScale == 0) { // CASE s1 == s2: to calculate u1 / u2 quotAndRem[0] = this.getUnscaledValue().divide( divisor.getUnscaledValue() ); } else if (diffScale > 0) { // CASE s1 >= s2: to calculate u1 / (u2 * 10^(s1-s2) quotAndRem[0] = this.getUnscaledValue().divide( divisor.getUnscaledValue().multiply(TMultiplication.powerOf10(diffScale)) ); // To chose 10^newScale to get a quotient with at least 'mc.precision()' digits newScale = Math.min(diffScale, Math.max(mcPrecision - quotPrecision + 1, 0)); // To calculate: (u1 / (u2 * 10^(s1-s2)) * 10^newScale quotAndRem[0] = quotAndRem[0].multiply(TMultiplication.powerOf10(newScale)); } else {// CASE s2 > s1: /* To calculate the minimum power of ten, such that the quotient * (u1 * 10^exp) / u2 has at least 'mc.precision()' digits. */ long exp = Math.min(-diffScale, Math.max((long)mcPrecision - diffPrecision, 0)); long compRemDiv; // Let be: (u1 * 10^exp) / u2 = [q,r] quotAndRem = this.getUnscaledValue().multiply(TMultiplication.powerOf10(exp)). divideAndRemainder(divisor.getUnscaledValue()); newScale += exp; // To fix the scale exp = -newScale; // The remaining power of ten // If after division there is a remainder... if ((quotAndRem[1].signum() != 0) && (exp > 0)) { // Log10(r) + ((s2 - s1) - exp) > mc.precision ? compRemDiv = (new TBigDecimal(quotAndRem[1])).precision() + exp - divisor.precision(); if (compRemDiv == 0) { // To calculate: (r * 10^exp2) / u2 quotAndRem[1] = quotAndRem[1].multiply(TMultiplication.powerOf10(exp)). divide(divisor.getUnscaledValue()); compRemDiv = Math.abs(quotAndRem[1].signum()); } if (compRemDiv > 0) { // The quotient won't fit in 'mc.precision()' digits throw new ArithmeticException("Division impossible"); } } } // Fast return if the quotient is zero if (quotAndRem[0].signum() == 0) { return zeroScaledBy(diffScale); } TBigInteger strippedBI = quotAndRem[0]; TBigDecimal integralValue = new TBigDecimal(quotAndRem[0]); long resultPrecision = integralValue.precision(); int i = 1; // To strip trailing zeros until the specified precision is reached while (!strippedBI.testBit(0)) { quotAndRem = strippedBI.divideAndRemainder(TEN_POW[i]); if ((quotAndRem[1].signum() == 0) && ((resultPrecision - i >= mcPrecision) || (newScale - i >= diffScale)) ) { resultPrecision -= i; newScale -= i; if (i < lastPow) { i++; } strippedBI = quotAndRem[0]; } else { if (i == 1) { break; } i = 1; } } // To check if the result fit in 'mc.precision()' digits if (resultPrecision > mcPrecision) { throw new ArithmeticException("Division impossible"); } integralValue.scale = toIntScale(newScale); integralValue.setUnscaledValue(strippedBI); return integralValue; } /** * Returns a new {@code BigDecimal} whose value is {@code this % divisor}. *

* The remainder is defined as {@code this - * this.divideToIntegralValue(divisor) * divisor}. * * @param divisor * value by which {@code this} is divided. * @return {@code this % divisor}. * @throws NullPointerException * if {@code divisor == null}. * @throws ArithmeticException * if {@code divisor == 0}. */ public TBigDecimal remainder(TBigDecimal divisor) { return divideAndRemainder(divisor)[1]; } /** * Returns a new {@code BigDecimal} whose value is {@code this % divisor}. *

* The remainder is defined as {@code this - * this.divideToIntegralValue(divisor) * divisor}. *

* The specified rounding mode {@code mc} is used for the division only. * * @param divisor * value by which {@code this} is divided. * @param mc * rounding mode and precision to be used. * @return {@code this % divisor}. * @throws NullPointerException * if {@code divisor == null}. * @throws ArithmeticException * if {@code divisor == 0}. * @throws ArithmeticException * if {@code mc.getPrecision() > 0} and the result of {@code * this.divideToIntegralValue(divisor, mc)} requires more digits * to be represented. */ public TBigDecimal remainder(TBigDecimal divisor, TMathContext mc) { return divideAndRemainder(divisor, mc)[1]; } /** * Returns a {@code BigDecimal} array which contains the integral part of * {@code this / divisor} at index 0 and the remainder {@code this % * divisor} at index 1. The quotient is rounded down towards zero to the * next integer. * * @param divisor * value by which {@code this} is divided. * @return {@code [this.divideToIntegralValue(divisor), * this.remainder(divisor)]}. * @throws NullPointerException * if {@code divisor == null}. * @throws ArithmeticException * if {@code divisor == 0}. * @see #divideToIntegralValue * @see #remainder */ public TBigDecimal[] divideAndRemainder(TBigDecimal divisor) { TBigDecimal quotAndRem[] = new TBigDecimal[2]; quotAndRem[0] = this.divideToIntegralValue(divisor); quotAndRem[1] = this.subtract( quotAndRem[0].multiply(divisor) ); return quotAndRem; } /** * Returns a {@code BigDecimal} array which contains the integral part of * {@code this / divisor} at index 0 and the remainder {@code this % * divisor} at index 1. The quotient is rounded down towards zero to the * next integer. The rounding mode passed with the parameter {@code mc} is * not considered. But if the precision of {@code mc > 0} and the integral * part requires more digits, then an {@code ArithmeticException} is thrown. * * @param divisor * value by which {@code this} is divided. * @param mc * math context which determines the maximal precision of the * result. * @return {@code [this.divideToIntegralValue(divisor), * this.remainder(divisor)]}. * @throws NullPointerException * if {@code divisor == null}. * @throws ArithmeticException * if {@code divisor == 0}. * @see #divideToIntegralValue * @see #remainder */ public TBigDecimal[] divideAndRemainder(TBigDecimal divisor, TMathContext mc) { TBigDecimal quotAndRem[] = new TBigDecimal[2]; quotAndRem[0] = this.divideToIntegralValue(divisor, mc); quotAndRem[1] = this.subtract( quotAndRem[0].multiply(divisor) ); return quotAndRem; } /** * Returns a new {@code BigDecimal} whose value is {@code this ^ n}. The * scale of the result is {@code n} times the scales of {@code this}. *

* {@code x.pow(0)} returns {@code 1}, even if {@code x == 0}. *

* Implementation Note: The implementation is based on the ANSI standard * X3.274-1996 algorithm. * * @param n * exponent to which {@code this} is raised. * @return {@code this ^ n}. * @throws ArithmeticException * if {@code n < 0} or {@code n > 999999999}. */ public TBigDecimal pow(int n) { if (n == 0) { return ONE; } if ((n < 0) || (n > 999999999)) { throw new ArithmeticException("Invalid Operation"); } long newScale = scale * (long)n; // Let be: this = [u,s] so: this^n = [u^n, s*n] return ((isZero()) ? zeroScaledBy(newScale) : new TBigDecimal(getUnscaledValue().pow(n), toIntScale(newScale))); } /** * Returns a new {@code BigDecimal} whose value is {@code this ^ n}. The * result is rounded according to the passed context {@code mc}. *

* Implementation Note: The implementation is based on the ANSI standard * X3.274-1996 algorithm. * * @param n * exponent to which {@code this} is raised. * @param mc * rounding mode and precision for the result of this operation. * @return {@code this ^ n}. * @throws ArithmeticException * if {@code n < 0} or {@code n > 999999999}. */ public TBigDecimal pow(int n, TMathContext mc) { // The ANSI standard X3.274-1996 algorithm int m = Math.abs(n); int mcPrecision = mc.getPrecision(); int elength = (int)MathUtil.log10(m) + 1; // decimal digits in 'n' int oneBitMask; // mask of bits TBigDecimal accum; // the single accumulator TMathContext newPrecision = mc; // MathContext by default // In particular cases, it reduces the problem to call the other 'pow()' if ((n == 0) || ((isZero()) && (n > 0))) { return pow(n); } if ((m > 999999999) || ((mcPrecision == 0) && (n < 0)) || ((mcPrecision > 0) && (elength > mcPrecision))) { throw new ArithmeticException("Invalid Operation"); } if (mcPrecision > 0) { newPrecision = new TMathContext( mcPrecision + elength + 1, mc.getRoundingMode()); } // The result is calculated as if 'n' were positive accum = round(newPrecision); oneBitMask = highestOneBit(m) >> 1; while (oneBitMask > 0) { accum = accum.multiply(accum, newPrecision); if ((m & oneBitMask) == oneBitMask) { accum = accum.multiply(this, newPrecision); } oneBitMask >>= 1; } // If 'n' is negative, the value is divided into 'ONE' if (n < 0) { accum = ONE.divide(accum, newPrecision); } // The final value is rounded to the destination precision accum.inplaceRound(mc); return accum; } /** * Returns a new {@code BigDecimal} whose value is the absolute value of * {@code this}. The scale of the result is the same as the scale of this. * * @return {@code abs(this)} */ public TBigDecimal abs() { return ((signum() < 0) ? negate() : this); } /** * Returns a new {@code BigDecimal} whose value is the absolute value of * {@code this}. The result is rounded according to the passed context * {@code mc}. * * @param mc * rounding mode and precision for the result of this operation. * @return {@code abs(this)} */ public TBigDecimal abs(TMathContext mc) { return round(mc).abs(); } /** * Returns a new {@code BigDecimal} whose value is the {@code -this}. The * scale of the result is the same as the scale of this. * * @return {@code -this} */ public TBigDecimal negate() { if(bitLength < 63 || (bitLength == 63 && smallValue!=Long.MIN_VALUE)) { return valueOf(-smallValue,scale); } return new TBigDecimal(getUnscaledValue().negate(), scale); } /** * Returns a new {@code BigDecimal} whose value is the {@code -this}. The * result is rounded according to the passed context {@code mc}. * * @param mc * rounding mode and precision for the result of this operation. * @return {@code -this} */ public TBigDecimal negate(TMathContext mc) { return round(mc).negate(); } /** * Returns a new {@code BigDecimal} whose value is {@code +this}. The scale * of the result is the same as the scale of this. * * @return {@code this} */ public TBigDecimal plus() { return this; } /** * Returns a new {@code BigDecimal} whose value is {@code +this}. The result * is rounded according to the passed context {@code mc}. * * @param mc * rounding mode and precision for the result of this operation. * @return {@code this}, rounded */ public TBigDecimal plus(TMathContext mc) { return round(mc); } /** * Returns the sign of this {@code BigDecimal}. * * @return {@code -1} if {@code this < 0}, * {@code 0} if {@code this == 0}, * {@code 1} if {@code this > 0}. */ public int signum() { if( bitLength < 64) { return signum( this.smallValue ); } return getUnscaledValue().signum(); } private boolean isZero() { //Watch out: -1 has a bitLength=0 return bitLength == 0 && this.smallValue != -1; } /** * Returns the scale of this {@code BigDecimal}. The scale is the number of * digits behind the decimal point. The value of this {@code BigDecimal} is * the unsignedValue * 10^(-scale). If the scale is negative, then this * {@code BigDecimal} represents a big integer. * * @return the scale of this {@code BigDecimal}. */ public int scale() { return scale; } /** * Returns the precision of this {@code BigDecimal}. The precision is the * number of decimal digits used to represent this decimal. It is equivalent * to the number of digits of the unscaled value. The precision of {@code 0} * is {@code 1} (independent of the scale). * * @return the precision of this {@code BigDecimal}. */ public int precision() { // Checking if the precision already was calculated if (precision > 0) { return precision; } int bitLength = this.bitLength; int decimalDigits = 1; // the precision to be calculated double doubleUnsc = 1; // intVal in 'double' if (bitLength < 1024) { // To calculate the precision for small numbers if (bitLength >= 64) { doubleUnsc = getUnscaledValue().doubleValue(); } else if (bitLength >= 1) { doubleUnsc = smallValue; } decimalDigits += MathUtil.log10(Math.abs(doubleUnsc)); } else {// (bitLength >= 1024) /* To calculate the precision for large numbers * Note that: 2 ^(bitlength() - 1) <= intVal < 10 ^(precision()) */ decimalDigits += (bitLength - 1) * LOG10_2; // If after division the number isn't zero, exists an aditional digit if (getUnscaledValue().divide(TMultiplication.powerOf10(decimalDigits)).signum() != 0) { decimalDigits++; } } precision = decimalDigits; return precision; } /** * Returns the unscaled value (mantissa) of this {@code BigDecimal} instance * as a {@code BigInteger}. The unscaled value can be computed as {@code * this} 10^(scale). * * @return unscaled value (this * 10^(scale)). */ public TBigInteger unscaledValue() { return getUnscaledValue(); } /** * Returns a new {@code BigDecimal} whose value is {@code this}, rounded * according to the passed context {@code mc}. *

* If {@code mc.precision = 0}, then no rounding is performed. *

* If {@code mc.precision > 0} and {@code mc.roundingMode == UNNECESSARY}, * then an {@code ArithmeticException} is thrown if the result cannot be * represented exactly within the given precision. * * @param mc * rounding mode and precision for the result of this operation. * @return {@code this} rounded according to the passed context. * @throws ArithmeticException * if {@code mc.precision > 0} and {@code mc.roundingMode == * UNNECESSARY} and this cannot be represented within the given * precision. */ public TBigDecimal round(TMathContext mc) { TBigDecimal thisBD = new TBigDecimal(getUnscaledValue(), scale); thisBD.inplaceRound(mc); return thisBD; } /** * Returns a new {@code BigDecimal} instance with the specified scale. *

* If the new scale is greater than the old scale, then additional zeros are * added to the unscaled value. In this case no rounding is necessary. *

* If the new scale is smaller than the old scale, then trailing digits are * removed. If these trailing digits are not zero, then the remaining * unscaled value has to be rounded. For this rounding operation the * specified rounding mode is used. * * @param newScale * scale of the result returned. * @param roundingMode * rounding mode to be used to round the result. * @return a new {@code BigDecimal} instance with the specified scale. * @throws NullPointerException * if {@code roundingMode == null}. * @throws ArithmeticException * if {@code roundingMode == ROUND_UNNECESSARY} and rounding is * necessary according to the given scale. */ public TBigDecimal setScale(int newScale, TRoundingMode roundingMode) { if (roundingMode == null) { throw new NullPointerException(); } long diffScale = newScale - (long)scale; // Let be: 'this' = [u,s] if(diffScale == 0) { return this; } if(diffScale > 0) { // return [u * 10^(s2 - s), newScale] if(diffScale < LONG_TEN_POW.length && (this.bitLength + LONG_TEN_POW_BIT_LENGTH[(int)diffScale]) < 64 ) { return valueOf(this.smallValue*LONG_TEN_POW[(int)diffScale],newScale); } return new TBigDecimal(TMultiplication.multiplyByTenPow(getUnscaledValue(),(int)diffScale), newScale); } // diffScale < 0 // return [u,s] / [1,newScale] with the appropriate scale and rounding if(this.bitLength < 64 && -diffScale < LONG_TEN_POW.length) { return dividePrimitiveLongs(this.smallValue, LONG_TEN_POW[(int)-diffScale], newScale,roundingMode); } return divideBigIntegers(this.getUnscaledValue(),TMultiplication.powerOf10(-diffScale),newScale,roundingMode); } /** * Returns a new {@code BigDecimal} instance with the specified scale. *

* If the new scale is greater than the old scale, then additional zeros are * added to the unscaled value. In this case no rounding is necessary. *

* If the new scale is smaller than the old scale, then trailing digits are * removed. If these trailing digits are not zero, then the remaining * unscaled value has to be rounded. For this rounding operation the * specified rounding mode is used. * * @param newScale * scale of the result returned. * @param roundingMode * rounding mode to be used to round the result. * @return a new {@code BigDecimal} instance with the specified scale. * @throws IllegalArgumentException * if {@code roundingMode} is not a valid rounding mode. * @throws ArithmeticException * if {@code roundingMode == ROUND_UNNECESSARY} and rounding is * necessary according to the given scale. */ public TBigDecimal setScale(int newScale, int roundingMode) { return setScale(newScale, TRoundingMode.valueOf(roundingMode)); } /** * Returns a new {@code BigDecimal} instance with the specified scale. If * the new scale is greater than the old scale, then additional zeros are * added to the unscaled value. If the new scale is smaller than the old * scale, then trailing zeros are removed. If the trailing digits are not * zeros then an ArithmeticException is thrown. *

* If no exception is thrown, then the following equation holds: {@code * x.setScale(s).compareTo(x) == 0}. * * @param newScale * scale of the result returned. * @return a new {@code BigDecimal} instance with the specified scale. * @throws ArithmeticException * if rounding would be necessary. */ public TBigDecimal setScale(int newScale) { return setScale(newScale, TRoundingMode.UNNECESSARY); } /** * Returns a new {@code BigDecimal} instance where the decimal point has * been moved {@code n} places to the left. If {@code n < 0} then the * decimal point is moved {@code -n} places to the right. *

* The result is obtained by changing its scale. If the scale of the result * becomes negative, then its precision is increased such that the scale is * zero. *

* Note, that {@code movePointLeft(0)} returns a result which is * mathematically equivalent, but which has {@code scale >= 0}. * * @param n * number of placed the decimal point has to be moved. * @return {@code this * 10^(-n}). */ public TBigDecimal movePointLeft(int n) { return movePoint(scale + (long)n); } private TBigDecimal movePoint(long newScale) { if (isZero()) { return zeroScaledBy(Math.max(newScale, 0)); } /* When: 'n'== Integer.MIN_VALUE isn't possible to call to movePointRight(-n) * since -Integer.MIN_VALUE == Integer.MIN_VALUE */ if(newScale >= 0) { if(bitLength < 64) { return valueOf(smallValue,toIntScale(newScale)); } return new TBigDecimal(getUnscaledValue(), toIntScale(newScale)); } if(-newScale < LONG_TEN_POW.length && bitLength + LONG_TEN_POW_BIT_LENGTH[(int)-newScale] < 64 ) { return valueOf(smallValue*LONG_TEN_POW[(int)-newScale],0); } return new TBigDecimal(TMultiplication.multiplyByTenPow(getUnscaledValue(),(int)-newScale), 0); } /** * Returns a new {@code BigDecimal} instance where the decimal point has * been moved {@code n} places to the right. If {@code n < 0} then the * decimal point is moved {@code -n} places to the left. *

* The result is obtained by changing its scale. If the scale of the result * becomes negative, then its precision is increased such that the scale is * zero. *

* Note, that {@code movePointRight(0)} returns a result which is * mathematically equivalent, but which has scale >= 0. * * @param n * number of placed the decimal point has to be moved. * @return {@code this * 10^n}. */ public TBigDecimal movePointRight(int n) { return movePoint(scale - (long)n); } /** * Returns a new {@code BigDecimal} whose value is {@code this} 10^{@code n}. * The scale of the result is {@code this.scale()} - {@code n}. * The precision of the result is the precision of {@code this}. *

* This method has the same effect as {@link #movePointRight}, except that * the precision is not changed. * * @param n * number of places the decimal point has to be moved. * @return {@code this * 10^n} */ public TBigDecimal scaleByPowerOfTen(int n) { long newScale = scale - (long)n; if(bitLength < 64) { //Taking care when a 0 is to be scaled if( smallValue==0 ){ return zeroScaledBy( newScale ); } return valueOf(smallValue,toIntScale(newScale)); } return new TBigDecimal(getUnscaledValue(), toIntScale(newScale)); } /** * Returns a new {@code BigDecimal} instance with the same value as {@code * this} but with a unscaled value where the trailing zeros have been * removed. If the unscaled value of {@code this} has n trailing zeros, then * the scale and the precision of the result has been reduced by n. * * @return a new {@code BigDecimal} instance equivalent to this where the * trailing zeros of the unscaled value have been removed. */ public TBigDecimal stripTrailingZeros() { int i = 1; // 1 <= i <= 18 int lastPow = TEN_POW.length - 1; long newScale = scale; if (isZero()) { return new TBigDecimal("0"); } TBigInteger strippedBI = getUnscaledValue(); TBigInteger[] quotAndRem; // while the number is even... while (!strippedBI.testBit(0)) { // To divide by 10^i quotAndRem = strippedBI.divideAndRemainder(TEN_POW[i]); // To look the remainder if (quotAndRem[1].signum() == 0) { // To adjust the scale newScale -= i; if (i < lastPow) { // To set to the next power i++; } strippedBI = quotAndRem[0]; } else { if (i == 1) { // 'this' has no more trailing zeros break; } // To set to the smallest power of ten i = 1; } } return new TBigDecimal(strippedBI, toIntScale(newScale)); } /** * Compares this {@code BigDecimal} with {@code val}. Returns one of the * three values {@code 1}, {@code 0}, or {@code -1}. The method behaves as * if {@code this.subtract(val)} is computed. If this difference is > 0 then * 1 is returned, if the difference is < 0 then -1 is returned, and if the * difference is 0 then 0 is returned. This means, that if two decimal * instances are compared which are equal in value but differ in scale, then * these two instances are considered as equal. * * @param val * value to be compared with {@code this}. * @return {@code 1} if {@code this > val}, {@code -1} if {@code this < val}, * {@code 0} if {@code this == val}. * @throws NullPointerException * if {@code val == null}. */ //@Override public int compareTo(TBigDecimal val) { int thisSign = signum(); int valueSign = val.signum(); if( thisSign == valueSign) { if(this.scale == val.scale && this.bitLength<64 && val.bitLength<64 ) { return (smallValue < val.smallValue) ? -1 : (smallValue > val.smallValue) ? 1 : 0; } long diffScale = (long)this.scale - val.scale; int diffPrecision = this.aproxPrecision() - val.aproxPrecision(); if (diffPrecision > diffScale + 1) { return thisSign; } else if (diffPrecision < diffScale - 1) { return -thisSign; } else {// thisSign == val.signum() and diffPrecision is aprox. diffScale TBigInteger thisUnscaled = this.getUnscaledValue(); TBigInteger valUnscaled = val.getUnscaledValue(); // If any of both precision is bigger, append zeros to the shorter one if (diffScale < 0) { thisUnscaled = thisUnscaled.multiply(TMultiplication.powerOf10(-diffScale)); } else if (diffScale > 0) { valUnscaled = valUnscaled.multiply(TMultiplication.powerOf10(diffScale)); } return thisUnscaled.compareTo(valUnscaled); } } else if (thisSign < valueSign) { return -1; } else { return 1; } } /** * Returns {@code true} if {@code x} is a {@code BigDecimal} instance and if * this instance is equal to this big decimal. Two big decimals are equal if * their unscaled value and their scale is equal. For example, 1.0 * (10*10^(-1)) is not equal to 1.00 (100*10^(-2)). Similarly, zero * instances are not equal if their scale differs. * * @param x * object to be compared with {@code this}. * @return true if {@code x} is a {@code BigDecimal} and {@code this == x}. */ @Override public boolean equals(Object x) { if (this == x) { return true; } if (x instanceof TBigDecimal) { TBigDecimal x1 = (TBigDecimal) x; return x1.scale == scale && (bitLength < 64 ? (x1.smallValue == smallValue) : intVal.equals(x1.intVal)); } return false; } /** * Returns the minimum of this {@code BigDecimal} and {@code val}. * * @param val * value to be used to compute the minimum with this. * @return {@code min(this, val}. * @throws NullPointerException * if {@code val == null}. */ public TBigDecimal min(TBigDecimal val) { return ((compareTo(val) <= 0) ? this : val); } /** * Returns the maximum of this {@code BigDecimal} and {@code val}. * * @param val * value to be used to compute the maximum with this. * @return {@code max(this, val}. * @throws NullPointerException * if {@code val == null}. */ public TBigDecimal max(TBigDecimal val) { return ((compareTo(val) >= 0) ? this : val); } /** * Returns a hash code for this {@code BigDecimal}. * * @return hash code for {@code this}. */ @Override public int hashCode() { if (hashCode != 0) { return hashCode; } if (bitLength < 64) { hashCode = (int)(smallValue & 0xffffffff); hashCode = 33 * hashCode + (int)((smallValue >> 32) & 0xffffffff); hashCode = 17 * hashCode + scale; return hashCode; } hashCode = 17 * intVal.hashCode() + scale; return hashCode; } /** * Returns a canonical string representation of this {@code BigDecimal}. If * necessary, scientific notation is used. This representation always prints * all significant digits of this value. *

* If the scale is negative or if {@code scale - precision >= 6} then * scientific notation is used. * * @return a string representation of {@code this} in scientific notation if * necessary. */ @Override public String toString() { if (toStringImage != null) { return toStringImage; } if (bitLength < 32) { toStringImage = TConversion.toDecimalScaledString(smallValue,scale); return toStringImage; } String intString = getUnscaledValue().toString(); if (scale == 0) { return intString; } int begin = (getUnscaledValue().signum() < 0) ? 2 : 1; int end = intString.length(); long exponent = -(long)scale + end - begin; StringBuilder result = new StringBuilder(); result.append(intString); if ((scale > 0) && (exponent >= -6)) { if (exponent >= 0) { result.insert(end - scale, '.'); } else { result.insert(begin - 1, "0."); result.insert(begin + 1, String.valueOf(CH_ZEROS).substring( 0, -(int)exponent - 1)); } } else { if (end - begin >= 1) { result.insert(begin, '.'); end++; } result.insert(end, 'E'); if (exponent > 0) { result.insert(++end, '+'); } result.insert(++end, Long.toString(exponent)); } toStringImage = result.toString(); return toStringImage; } /** * Returns a string representation of this {@code BigDecimal}. This * representation always prints all significant digits of this value. *

* If the scale is negative or if {@code scale - precision >= 6} then * engineering notation is used. Engineering notation is similar to the * scientific notation except that the exponent is made to be a multiple of * 3 such that the integer part is >= 1 and < 1000. * * @return a string representation of {@code this} in engineering notation * if necessary. */ public String toEngineeringString() { String intString = getUnscaledValue().toString(); if (scale == 0) { return intString; } int begin = (getUnscaledValue().signum() < 0) ? 2 : 1; int end = intString.length(); long exponent = -(long)scale + end - begin; StringBuilder result = new StringBuilder(intString); if ((scale > 0) && (exponent >= -6)) { if (exponent >= 0) { result.insert(end - scale, '.'); } else { result.insert(begin - 1, "0."); //$NON-NLS-1$ result.insert(begin + 1, String.valueOf(CH_ZEROS).substring(0, -(int)exponent - 1)); } } else { int delta = end - begin; int rem = (int)(exponent % 3); if (rem != 0) { // adjust exponent so it is a multiple of three if (getUnscaledValue().signum() == 0) { // zero value rem = (rem < 0) ? -rem : 3 - rem; exponent += rem; } else { // nonzero value rem = (rem < 0) ? rem + 3 : rem; exponent -= rem; begin += rem; } if (delta < 3) { for (int i = rem - delta; i > 0; i--) { result.insert(end++, '0'); } } } if (end - begin >= 1) { result.insert(begin, '.'); end++; } if (exponent != 0) { result.insert(end, 'E'); if (exponent > 0) { result.insert(++end, '+'); } result.insert(++end, Long.toString(exponent)); } } return result.toString(); } /** * Returns a string representation of this {@code BigDecimal}. No scientific * notation is used. This methods adds zeros where necessary. *

* If this string representation is used to create a new instance, this * instance is generally not identical to {@code this} as the precision * changes. *

* {@code x.equals(new BigDecimal(x.toPlainString())} usually returns * {@code false}. *

* {@code x.compareTo(new BigDecimal(x.toPlainString())} returns {@code 0}. * * @return a string representation of {@code this} without exponent part. */ public String toPlainString() { String intStr = getUnscaledValue().toString(); if ((scale == 0) || ((isZero()) && (scale < 0))) { return intStr; } int begin = (signum() < 0) ? 1 : 0; int delta = scale; // We take space for all digits, plus a possible decimal point, plus 'scale' StringBuilder result = new StringBuilder(intStr.length() + 1 + Math.abs(scale)); if (begin == 1) { // If the number is negative, we insert a '-' character at front result.append('-'); } if (scale > 0) { delta -= (intStr.length() - begin); if (delta >= 0) { result.append("0."); //$NON-NLS-1$ // To append zeros after the decimal point for (; delta > CH_ZEROS.length; delta -= CH_ZEROS.length) { result.append(CH_ZEROS); } result.append(CH_ZEROS, 0, delta); result.append(intStr.substring(begin)); } else { delta = begin - delta; result.append(intStr.substring(begin, delta)); result.append('.'); result.append(intStr.substring(delta)); } } else {// (scale <= 0) result.append(intStr.substring(begin)); // To append trailing zeros for (; delta < -CH_ZEROS.length; delta += CH_ZEROS.length) { result.append(CH_ZEROS); } result.append(CH_ZEROS, 0, -delta); } return result.toString(); } /** * Returns this {@code BigDecimal} as a big integer instance. A fractional * part is discarded. * * @return this {@code BigDecimal} as a big integer instance. */ public TBigInteger toBigInteger() { if ((scale == 0) || (isZero())) { return getUnscaledValue(); } else if (scale < 0) { return getUnscaledValue().multiply(TMultiplication.powerOf10(-(long)scale)); } else {// (scale > 0) return getUnscaledValue().divide(TMultiplication.powerOf10(scale)); } } /** * Returns this {@code BigDecimal} as a big integer instance if it has no * fractional part. If this {@code BigDecimal} has a fractional part, i.e. * if rounding would be necessary, an {@code ArithmeticException} is thrown. * * @return this {@code BigDecimal} as a big integer value. * @throws ArithmeticException * if rounding is necessary. */ public TBigInteger toBigIntegerExact() { if ((scale == 0) || (isZero())) { return getUnscaledValue(); } else if (scale < 0) { return getUnscaledValue().multiply(TMultiplication.powerOf10(-(long)scale)); } else {// (scale > 0) TBigInteger[] integerAndFraction; // An optimization before do a heavy division if ((scale > aproxPrecision()) || (scale > getUnscaledValue().getLowestSetBit())) { throw new ArithmeticException("Rounding necessary"); } integerAndFraction = getUnscaledValue().divideAndRemainder(TMultiplication.powerOf10(scale)); if (integerAndFraction[1].signum() != 0) { // It exists a non-zero fractional part throw new ArithmeticException("Rounding necessary"); } return integerAndFraction[0]; } } /** * Returns this {@code BigDecimal} as a long value. Any fractional part is * discarded. If the integral part of {@code this} is too big to be * represented as a long, then {@code this} % 2^64 is returned. * * @return this {@code BigDecimal} as a long value. */ //@Override public long longValue() { /* If scale <= -64 there are at least 64 trailing bits zero in 10^(-scale). * If the scale is positive and very large the long value could be zero. */ return ((scale <= -64) || (scale > aproxPrecision()) ? 0L : toBigInteger().longValue()); } /** * Returns this {@code BigDecimal} as a long value if it has no fractional * part and if its value fits to the int range ([-2^{63}..2^{63}-1]). If * these conditions are not met, an {@code ArithmeticException} is thrown. * * @return this {@code BigDecimal} as a long value. * @throws ArithmeticException * if rounding is necessary or the number doesn't fit in a long. */ public long longValueExact() { return valueExact(64); } /** * Returns this {@code BigDecimal} as an int value. Any fractional part is * discarded. If the integral part of {@code this} is too big to be * represented as an int, then {@code this} % 2^32 is returned. * * @return this {@code BigDecimal} as a int value. */ //@Override public int intValue() { /* If scale <= -32 there are at least 32 trailing bits zero in 10^(-scale). * If the scale is positive and very large the long value could be zero. */ return ((scale <= -32) || (scale > aproxPrecision()) ? 0 : toBigInteger().intValue()); } /** * Returns this {@code BigDecimal} as a int value if it has no fractional * part and if its value fits to the int range ([-2^{31}..2^{31}-1]). If * these conditions are not met, an {@code ArithmeticException} is thrown. * * @return this {@code BigDecimal} as a int value. * @throws ArithmeticException * if rounding is necessary or the number doesn't fit in a int. */ public int intValueExact() { return (int)valueExact(32); } /** * Returns this {@code BigDecimal} as a short value if it has no fractional * part and if its value fits to the short range ([-2^{15}..2^{15}-1]). If * these conditions are not met, an {@code ArithmeticException} is thrown. * * @return this {@code BigDecimal} as a short value. * @throws ArithmeticException * if rounding is necessary of the number doesn't fit in a * short. */ public short shortValueExact() { return (short)valueExact(16); } /** * Returns this {@code BigDecimal} as a byte value if it has no fractional * part and if its value fits to the byte range ([-128..127]). If these * conditions are not met, an {@code ArithmeticException} is thrown. * * @return this {@code BigDecimal} as a byte value. * @throws ArithmeticException * if rounding is necessary or the number doesn't fit in a byte. */ public byte byteValueExact() { return (byte)valueExact(8); } /** * Returns this {@code BigDecimal} as a float value. If {@code this} is too * big to be represented as a float, then {@code Float.POSITIVE_INFINITY} * or {@code Float.NEGATIVE_INFINITY} is returned. *

* Note, that if the unscaled value has more than 24 significant digits, * then this decimal cannot be represented exactly in a float variable. In * this case the result is rounded. *

* For example, if the instance {@code x1 = new BigDecimal("0.1")} cannot be * represented exactly as a float, and thus {@code x1.equals(new * BigDecimal(x1.folatValue())} returns {@code false} for this case. *

* Similarly, if the instance {@code new BigDecimal(16777217)} is converted * to a float, the result is {@code 1.6777216E}7. * * @return this {@code BigDecimal} as a float value. */ //@Override public float floatValue() { /* A similar code like in doubleValue() could be repeated here, * but this simple implementation is quite efficient. */ float floatResult = signum(); long powerOfTwo = this.bitLength - (long)(scale / LOG10_2); if ((powerOfTwo < -149) || (floatResult == 0.0f)) { // Cases which 'this' is very small floatResult *= 0.0f; } else if (powerOfTwo > 129) { // Cases which 'this' is very large floatResult *= Float.POSITIVE_INFINITY; } else { floatResult = (float)doubleValue(); } return floatResult; } /** * Returns this {@code BigDecimal} as a double value. If {@code this} is too * big to be represented as a float, then {@code Double.POSITIVE_INFINITY} * or {@code Double.NEGATIVE_INFINITY} is returned. *

* Note, that if the unscaled value has more than 53 significant digits, * then this decimal cannot be represented exactly in a double variable. In * this case the result is rounded. *

* For example, if the instance {@code x1 = new BigDecimal("0.1")} cannot be * represented exactly as a double, and thus {@code x1.equals(new * BigDecimal(x1.doubleValue())} returns {@code false} for this case. *

* Similarly, if the instance {@code new BigDecimal(9007199254740993L)} is * converted to a double, the result is {@code 9.007199254740992E15}. *

* * @return this {@code BigDecimal} as a double value. */ //@Override public double doubleValue() { int sign = signum(); int exponent = 1076; // bias + 53 int lowestSetBit; int discardedSize; long powerOfTwo = this.bitLength - (long)(scale / LOG10_2); long bits; // IEEE-754 Standard long tempBits; // for temporal calculations TBigInteger mantisa; if ((powerOfTwo < -1074) || (sign == 0)) { // Cases which 'this' is very small return (sign * 0.0d); } else if (powerOfTwo > 1025) { // Cases which 'this' is very large return (sign * Double.POSITIVE_INFINITY); } mantisa = getUnscaledValue().abs(); // Let be: this = [u,s], with s > 0 if (scale <= 0) { // mantisa = abs(u) * 10^s mantisa = mantisa.multiply(TMultiplication.powerOf10(-scale)); } else {// (scale > 0) TBigInteger quotAndRem[]; TBigInteger powerOfTen = TMultiplication.powerOf10(scale); int k = 100 - (int)powerOfTwo; int compRem; if (k > 0) { /* Computing (mantisa * 2^k) , where 'k' is a enough big * power of '2' to can divide by 10^s */ mantisa = mantisa.shiftLeft(k); exponent -= k; } // Computing (mantisa * 2^k) / 10^s quotAndRem = mantisa.divideAndRemainder(powerOfTen); // To check if the fractional part >= 0.5 compRem = quotAndRem[1].shiftLeftOneBit().compareTo(powerOfTen); // To add two rounded bits at end of mantisa mantisa = quotAndRem[0].shiftLeft(2).add( TBigInteger.valueOf((compRem * (compRem + 3)) / 2 + 1)); exponent -= 2; } lowestSetBit = mantisa.getLowestSetBit(); discardedSize = mantisa.bitLength() - 54; if (discardedSize > 0) {// (n > 54) // mantisa = (abs(u) * 10^s) >> (n - 54) bits = mantisa.shiftRight(discardedSize).longValue(); tempBits = bits; // #bits = 54, to check if the discarded fraction produces a carry if ((((bits & 1) == 1) && (lowestSetBit < discardedSize)) || ((bits & 3) == 3)) { bits += 2; } } else {// (n <= 54) // mantisa = (abs(u) * 10^s) << (54 - n) bits = mantisa.longValue() << -discardedSize; tempBits = bits; // #bits = 54, to check if the discarded fraction produces a carry: if ((bits & 3) == 3) { bits += 2; } } // Testing bit 54 to check if the carry creates a new binary digit if ((bits & 0x40000000000000L) == 0) { // To drop the last bit of mantisa (first discarded) bits >>= 1; // exponent = 2^(s-n+53+bias) exponent += discardedSize; } else {// #bits = 54 bits >>= 2; exponent += discardedSize + 1; } // To test if the 53-bits number fits in 'double' if (exponent > 2046) {// (exponent - bias > 1023) return (sign * Double.POSITIVE_INFINITY); } else if (exponent <= 0) {// (exponent - bias <= -1023) // Denormalized numbers (having exponent == 0) if (exponent < -53) {// exponent - bias < -1076 return (sign * 0.0d); } // -1076 <= exponent - bias <= -1023 // To discard '- exponent + 1' bits bits = tempBits >> 1; tempBits = bits & (-1L >>> (63 + exponent)); bits >>= (-exponent ); // To test if after discard bits, a new carry is generated if (((bits & 3) == 3) || (((bits & 1) == 1) && (tempBits != 0) && (lowestSetBit < discardedSize))) { bits += 1; } exponent = 0; bits >>= 1; } // Construct the 64 double bits: [sign(1), exponent(11), mantisa(52)] bits = (sign & 0x8000000000000000L) | ((long)exponent << 52) | (bits & 0xFFFFFFFFFFFFFL); return Double.longBitsToDouble(bits); } /** * Returns the unit in the last place (ULP) of this {@code BigDecimal} * instance. An ULP is the distance to the nearest big decimal with the same * precision. *

* The amount of a rounding error in the evaluation of a floating-point * operation is often expressed in ULPs. An error of 1 ULP is often seen as * a tolerable error. *

* For class {@code BigDecimal}, the ULP of a number is simply 10^(-scale). *

* For example, {@code new BigDecimal(0.1).ulp()} returns {@code 1E-55}. * * @return unit in the last place (ULP) of this {@code BigDecimal} instance. */ public TBigDecimal ulp() { return valueOf(1, scale); } /* Private Methods */ /** * It does all rounding work of the public method * {@code round(MathContext)}, performing an inplace rounding * without creating a new object. * * @param mc * the {@code MathContext} for perform the rounding. * @see #round(TMathContext) */ private void inplaceRound(TMathContext mc) { int mcPrecision = mc.getPrecision(); if (aproxPrecision() - mcPrecision <= 0 || mcPrecision == 0) { return; } int discardedPrecision = precision() - mcPrecision; // If no rounding is necessary it returns immediately if ((discardedPrecision <= 0)) { return; } // When the number is small perform an efficient rounding if (this.bitLength < 64) { smallRound(mc, discardedPrecision); return; } // Getting the integer part and the discarded fraction TBigInteger sizeOfFraction = TMultiplication.powerOf10(discardedPrecision); TBigInteger[] integerAndFraction = getUnscaledValue().divideAndRemainder(sizeOfFraction); long newScale = (long)scale - discardedPrecision; int compRem; TBigDecimal tempBD; // If the discarded fraction is non-zero, perform rounding if (integerAndFraction[1].signum() != 0) { // To check if the discarded fraction >= 0.5 compRem = (integerAndFraction[1].abs().shiftLeftOneBit().compareTo(sizeOfFraction)); // To look if there is a carry compRem = roundingBehavior( integerAndFraction[0].testBit(0) ? 1 : 0, integerAndFraction[1].signum() * (5 + compRem), mc.getRoundingMode()); if (compRem != 0) { integerAndFraction[0] = integerAndFraction[0].add(TBigInteger.valueOf(compRem)); } tempBD = new TBigDecimal(integerAndFraction[0]); // If after to add the increment the precision changed, we normalize the size if (tempBD.precision() > mcPrecision) { integerAndFraction[0] = integerAndFraction[0].divide(TBigInteger.TEN); newScale--; } } // To update all internal fields scale = toIntScale(newScale); precision = mcPrecision; setUnscaledValue(integerAndFraction[0]); } private static int longCompareTo(long value1, long value2) { return value1 > value2 ? 1 : (value1 < value2 ? -1 : 0); } /** * This method implements an efficient rounding for numbers which unscaled * value fits in the type {@code long}. * * @param mc * the context to use * @param discardedPrecision * the number of decimal digits that are discarded * @see #round(TMathContext) */ private void smallRound(TMathContext mc, int discardedPrecision) { long sizeOfFraction = LONG_TEN_POW[discardedPrecision]; long newScale = (long)scale - discardedPrecision; long unscaledVal = smallValue; // Getting the integer part and the discarded fraction long integer = unscaledVal / sizeOfFraction; long fraction = unscaledVal % sizeOfFraction; int compRem; // If the discarded fraction is non-zero perform rounding if (fraction != 0) { // To check if the discarded fraction >= 0.5 compRem = longCompareTo(Math.abs(fraction) << 1,sizeOfFraction); // To look if there is a carry integer += roundingBehavior( ((int)integer) & 1, signum(fraction) * (5 + compRem), mc.getRoundingMode()); // If after to add the increment the precision changed, we normalize the size if (MathUtil.log10(Math.abs(integer)) >= mc.getPrecision()) { integer /= 10; newScale--; } } // To update all internal fields scale = toIntScale(newScale); precision = mc.getPrecision(); smallValue = integer; bitLength = bitLength(integer); intVal = null; } /** * Return an increment that can be -1,0 or 1, depending of * {@code roundingMode}. * * @param parityBit * can be 0 or 1, it's only used in the case * {@code HALF_EVEN} * @param fraction * the mantisa to be analyzed * @param roundingMode * the type of rounding * @return the carry propagated after rounding */ private static int roundingBehavior(int parityBit, int fraction, TRoundingMode roundingMode) { int increment = 0; // the carry after rounding switch (roundingMode) { case UNNECESSARY: if (fraction != 0) { throw new ArithmeticException("Rounding necessary"); } break; case UP: increment = signum(fraction); break; case DOWN: break; case CEILING: increment = Math.max(signum(fraction), 0); break; case FLOOR: increment = Math.min(signum(fraction), 0); break; case HALF_UP: if (Math.abs(fraction) >= 5) { increment = signum(fraction); } break; case HALF_DOWN: if (Math.abs(fraction) > 5) { increment = signum(fraction); } break; case HALF_EVEN: if (Math.abs(fraction) + parityBit > 5) { increment = signum(fraction); } break; } return increment; } /** * If {@code intVal} has a fractional part throws an exception, * otherwise it counts the number of bits of value and checks if it's out of * the range of the primitive type. If the number fits in the primitive type * returns this number as {@code long}, otherwise throws an * exception. * * @param bitLengthOfType * number of bits of the type whose value will be calculated * exactly * @return the exact value of the integer part of {@code BigDecimal} * when is possible * @throws ArithmeticException when rounding is necessary or the * number don't fit in the primitive type */ private long valueExact(int bitLengthOfType) { TBigInteger bigInteger = toBigIntegerExact(); if (bigInteger.bitLength() < bitLengthOfType) { // It fits in the primitive type return bigInteger.longValue(); } throw new ArithmeticException("Rounding necessary"); } /** * If the precision already was calculated it returns that value, otherwise * it calculates a very good approximation efficiently . Note that this * value will be {@code precision()} or {@code precision()-1} * in the worst case. * * @return an approximation of {@code precision()} value */ private int aproxPrecision() { return (precision > 0) ? precision : ((int) ((this.bitLength - 1) * LOG10_2)) + 1; } /** * It tests if a scale of type {@code long} fits in 32 bits. It * returns the same scale being casted to {@code int} type when is * possible, otherwise throws an exception. * * @param longScale * a 64 bit scale * @return a 32 bit scale when is possible * @throws ArithmeticException when {@code scale} doesn't * fit in {@code int} type * @see #scale */ private static int toIntScale(long longScale) { if (longScale < Integer.MIN_VALUE) { throw new ArithmeticException("Overflow"); } else if (longScale > Integer.MAX_VALUE) { throw new ArithmeticException("Underflow"); } else { return (int)longScale; } } /** * It returns the value 0 with the most approximated scale of type * {@code int}. if {@code longScale > Integer.MAX_VALUE} the * scale will be {@code Integer.MAX_VALUE}; if * {@code longScale < Integer.MIN_VALUE} the scale will be * {@code Integer.MIN_VALUE}; otherwise {@code longScale} is * casted to the type {@code int}. * * @param longScale * the scale to which the value 0 will be scaled. * @return the value 0 scaled by the closer scale of type {@code int}. * @see #scale */ private static TBigDecimal zeroScaledBy(long longScale) { if (longScale == (int) longScale) { return valueOf(0,(int)longScale); } if (longScale >= 0) { return new TBigDecimal( 0, Integer.MAX_VALUE); } return new TBigDecimal( 0, Integer.MIN_VALUE); } private TBigInteger getUnscaledValue() { if(intVal == null) { intVal = TBigInteger.valueOf(smallValue); } return intVal; } private void setUnscaledValue(TBigInteger unscaledValue) { this.intVal = unscaledValue; this.bitLength = unscaledValue.bitLength(); if(this.bitLength < 64) { this.smallValue = unscaledValue.longValue(); } } private static int bitLength(long smallValue) { if(smallValue < 0) { smallValue = ~smallValue; } return 64 - numberOfLeadingZeros(smallValue); } private static int bitLength(int smallValue) { if(smallValue < 0) { smallValue = ~smallValue; } return 32 - numberOfLeadingZeros(smallValue); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy