All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.codename1.util.TMultiplication Maven / Gradle / Ivy

There is a newer version: 7.0.161
Show newest version
/*
 *  Licensed to the Apache Software Foundation (ASF) under one or more
 *  contributor license agreements.  See the NOTICE file distributed with
 *  this work for additional information regarding copyright ownership.
 *  The ASF licenses this file to You under the Apache License, Version 2.0
 *  (the "License"); you may not use this file except in compliance with
 *  the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

package com.codename1.util;

/**
 * Static library that provides all multiplication of {@link TBigInteger} methods.
 */
class TMultiplication {

    /** Just to denote that this class can't be instantiated. */
    private TMultiplication() {}

    /**
     * Break point in digits (number of {@code int} elements)
     * between Karatsuba and Pencil and Paper multiply.
     */
    static final int whenUseKaratsuba = 63; // an heuristic value

    /**
     * An array with powers of ten that fit in the type {@code int}.
     * ({@code 10^0,10^1,...,10^9})
     */
    static final int tenPows[] = {
        1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000
    };

    /**
     * An array with powers of five that fit in the type {@code int}.
     * ({@code 5^0,5^1,...,5^13})
     */
    static final int fivePows[] = {
        1, 5, 25, 125, 625, 3125, 15625, 78125, 390625,
        1953125, 9765625, 48828125, 244140625, 1220703125
    };

    /**
     * An array with the first powers of ten in {@code BigInteger} version.
     * ({@code 10^0,10^1,...,10^31})
     */
    static final TBigInteger[] bigTenPows = new TBigInteger[32];

    /**
     * An array with the first powers of five in {@code BigInteger} version.
     * ({@code 5^0,5^1,...,5^31})
     */
    static final TBigInteger bigFivePows[] = new TBigInteger[32];



    static {
        int i;
        long fivePow = 1L;

        for (i = 0; i <= 18; i++) {
            bigFivePows[i] = TBigInteger.valueOf(fivePow);
            bigTenPows[i] = TBigInteger.valueOf(fivePow << i);
            fivePow *= 5;
        }
        for (; i < bigTenPows.length; i++) {
            bigFivePows[i] = bigFivePows[i - 1].multiply(bigFivePows[1]);
            bigTenPows[i] = bigTenPows[i - 1].multiply(TBigInteger.TEN);
        }
    }

    /**
     * Performs a multiplication of two BigInteger and hides the algorithm used.
     * @see TBigInteger#multiply(TBigInteger)
     */
    static TBigInteger multiply(TBigInteger x, TBigInteger y) {
        return karatsuba(x, y);
    }

    /**
     * Performs the multiplication with the Karatsuba's algorithm.
     * Karatsuba's algorithm:
     *
     *             u = u1 * B + u0
* v = v1 * B + v0
* * * u*v = (u1 * v1) * B2 + ((u1 - u0) * (v0 - v1) + u1 * v1 + * u0 * v0 ) * B + u0 * v0
*
* @param op1 first factor of the product * @param op2 second factor of the product * @return {@code op1 * op2} * @see #multiply(TBigInteger, TBigInteger) */ static TBigInteger karatsuba(TBigInteger op1, TBigInteger op2) { TBigInteger temp; if (op2.numberLength > op1.numberLength) { temp = op1; op1 = op2; op2 = temp; } if (op2.numberLength < whenUseKaratsuba) { return multiplyPAP(op1, op2); } /* Karatsuba: u = u1*B + u0 * v = v1*B + v0 * u*v = (u1*v1)*B^2 + ((u1-u0)*(v0-v1) + u1*v1 + u0*v0)*B + u0*v0 */ // ndiv2 = (op1.numberLength / 2) * 32 int ndiv2 = (op1.numberLength & 0xFFFFFFFE) << 4; TBigInteger upperOp1 = op1.shiftRight(ndiv2); TBigInteger upperOp2 = op2.shiftRight(ndiv2); TBigInteger lowerOp1 = op1.subtract(upperOp1.shiftLeft(ndiv2)); TBigInteger lowerOp2 = op2.subtract(upperOp2.shiftLeft(ndiv2)); TBigInteger upper = karatsuba(upperOp1, upperOp2); TBigInteger lower = karatsuba(lowerOp1, lowerOp2); TBigInteger middle = karatsuba( upperOp1.subtract(lowerOp1), lowerOp2.subtract(upperOp2)); middle = middle.add(upper).add(lower); middle = middle.shiftLeft(ndiv2); upper = upper.shiftLeft(ndiv2 << 1); return upper.add(middle).add(lower); } /** * Multiplies two BigIntegers. * Implements traditional scholar algorithm described by Knuth. * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
A=a3a2a1a0
B=b2b1b1
b0*a3b0*a2b0*a1b0*a0
b1*a3b1*a2b1*a1b1*a0
+b2*a3b2*a2b2*a1b2*a0
____________________________________
A*B=R=r5r4r3r2r1r0
* *
* * @param op1 first factor of the multiplication {@code op1 >= 0} * @param op2 second factor of the multiplication {@code op2 >= 0} * @return a {@code BigInteger} of value {@code op1 * op2} */ static TBigInteger multiplyPAP(TBigInteger a, TBigInteger b) { // PRE: a >= b int aLen = a.numberLength; int bLen = b.numberLength; int resLength = aLen + bLen; int resSign = (a.sign != b.sign) ? -1 : 1; // A special case when both numbers don't exceed int if (resLength == 2) { long val = unsignedMultAddAdd(a.digits[0], b.digits[0], 0, 0); int valueLo = (int)val; int valueHi = (int)(val >>> 32); return ((valueHi == 0) ? new TBigInteger(resSign, valueLo) : new TBigInteger(resSign, 2, new int[]{valueLo, valueHi})); } int[] aDigits = a.digits; int[] bDigits = b.digits; int resDigits[] = new int[resLength]; // Common case multArraysPAP(aDigits, aLen, bDigits, bLen, resDigits); TBigInteger result = new TBigInteger(resSign, resLength, resDigits); result.cutOffLeadingZeroes(); return result; } static void multArraysPAP(int[] aDigits, int aLen, int[] bDigits, int bLen, int[] resDigits) { if(aLen == 0 || bLen == 0) return; if(aLen == 1) { resDigits[bLen] = multiplyByInt(resDigits, bDigits, bLen, aDigits[0]); } else if(bLen == 1) { resDigits[aLen] = multiplyByInt(resDigits, aDigits, aLen, bDigits[0]); } else { multPAP(aDigits, bDigits, resDigits, aLen, bLen); } } static void multPAP(int a[], int b[], int t[], int aLen, int bLen) { if(a == b && aLen == bLen) { square(a, aLen, t); return; } for(int i = 0; i < aLen; i++){ long carry = 0; int aI = a[i]; for (int j = 0; j < bLen; j++){ carry = unsignedMultAddAdd(aI, b[j], t[i+j], (int)carry); t[i+j] = (int) carry; carry >>>= 32; } t[i+bLen] = (int) carry; } } /** * Multiplies an array of integers by an integer value * and saves the result in {@code res}. * @param a the array of integers * @param aSize the number of elements of intArray to be multiplied * @param factor the multiplier * @return the top digit of production */ private static int multiplyByInt(int res[], int a[], final int aSize, final int factor) { long carry = 0; for (int i = 0; i < aSize; i++) { carry = unsignedMultAddAdd(a[i], factor, (int)carry, 0); res[i] = (int)carry; carry >>>= 32; } return (int)carry; } /** * Multiplies an array of integers by an integer value. * @param a the array of integers * @param aSize the number of elements of intArray to be multiplied * @param factor the multiplier * @return the top digit of production */ static int multiplyByInt(int a[], final int aSize, final int factor) { return multiplyByInt(a, a, aSize, factor); } /** * Multiplies a number by a positive integer. * @param val an arbitrary {@code BigInteger} * @param factor a positive {@code int} number * @return {@code val * factor} */ static TBigInteger multiplyByPositiveInt(TBigInteger val, int factor) { int resSign = val.sign; if (resSign == 0) { return TBigInteger.ZERO; } int aNumberLength = val.numberLength; int[] aDigits = val.digits; if (aNumberLength == 1) { long res = unsignedMultAddAdd(aDigits[0], factor, 0, 0); int resLo = (int)res; int resHi = (int)(res >>> 32); return ((resHi == 0) ? new TBigInteger(resSign, resLo) : new TBigInteger(resSign, 2, new int[]{resLo, resHi})); } // Common case int resLength = aNumberLength + 1; int resDigits[] = new int[resLength]; resDigits[aNumberLength] = multiplyByInt(resDigits, aDigits, aNumberLength, factor); TBigInteger result = new TBigInteger(resSign, resLength, resDigits); result.cutOffLeadingZeroes(); return result; } static TBigInteger pow(TBigInteger base, int exponent) { // PRE: exp > 0 TBigInteger res = TBigInteger.ONE; TBigInteger acc = base; for (; exponent > 1; exponent >>= 1) { if ((exponent & 1) != 0) { // if odd, multiply one more time by acc res = res.multiply(acc); } // acc = base^(2^i) //a limit where karatsuba performs a faster square than the square algorithm if ( acc.numberLength == 1 ){ acc = acc.multiply(acc); // square } else{ acc = new TBigInteger(1, square(acc.digits, acc.numberLength, new int [acc.numberLength<<1])); } } // exponent == 1, multiply one more time res = res.multiply(acc); return res; } /** * Performs a2 * @param a The number to square. * @param aLen The length of the number to square. */ static int[] square(int[] a, int aLen, int[] res) { long carry; for(int i = 0; i < aLen; i++){ carry = 0; for (int j = i+1; j < aLen; j++){ carry = unsignedMultAddAdd(a[i], a[j], res[i+j], (int)carry); res[i+j] = (int) carry; carry >>>= 32; } res[i+aLen] = (int) carry; } TBitLevel.shiftLeftOneBit(res, res, aLen << 1); carry = 0; for(int i = 0, index = 0; i < aLen; i++, index++){ carry = unsignedMultAddAdd(a[i], a[i], res[index],(int)carry); res[index] = (int) carry; carry >>>= 32; index++; carry += res[index] & 0xFFFFFFFFL; res[index] = (int)carry; carry >>>= 32; } return res; } /** * Multiplies a number by a power of ten. * This method is used in {@code BigDecimal} class. * @param val the number to be multiplied * @param exp a positive {@code long} exponent * @return {@code val * 10exp} */ static TBigInteger multiplyByTenPow(TBigInteger val, long exp) { // PRE: exp >= 0 return ((exp < tenPows.length) ? multiplyByPositiveInt(val, tenPows[(int)exp]) : val.multiply(powerOf10(exp))); } /** * It calculates a power of ten, which exponent could be out of 32-bit range. * Note that internally this method will be used in the worst case with * an exponent equals to: {@code Integer.MAX_VALUE - Integer.MIN_VALUE}. * @param exp the exponent of power of ten, it must be positive. * @return a {@code BigInteger} with value {@code 10exp}. */ static TBigInteger powerOf10(long exp) { // PRE: exp >= 0 int intExp = (int)exp; // "SMALL POWERS" if (exp < bigTenPows.length) { // The largest power that fit in 'long' type return bigTenPows[intExp]; } else if (exp <= 50) { // To calculate: 10^exp return TBigInteger.TEN.pow(intExp); } else if (exp <= 1000) { // To calculate: 5^exp * 2^exp return bigFivePows[1].pow(intExp).shiftLeft(intExp); } // "LARGE POWERS" /* * To check if there is free memory to allocate a BigInteger of the * estimated size, measured in bytes: 1 + [exp / log10(2)] */ long byteArraySize = 1 + (long)(exp / 2.4082399653118496); if (byteArraySize > 1000000) { throw new ArithmeticException("power of ten too big"); } if (exp <= Integer.MAX_VALUE) { // To calculate: 5^exp * 2^exp return bigFivePows[1].pow(intExp).shiftLeft(intExp); } /* * "HUGE POWERS" * * This branch probably won't be executed since the power of ten is too * big. */ // To calculate: 5^exp TBigInteger powerOfFive = bigFivePows[1].pow(Integer.MAX_VALUE); TBigInteger res = powerOfFive; long longExp = exp - Integer.MAX_VALUE; intExp = (int)(exp % Integer.MAX_VALUE); while (longExp > Integer.MAX_VALUE) { res = res.multiply(powerOfFive); longExp -= Integer.MAX_VALUE; } res = res.multiply(bigFivePows[1].pow(intExp)); // To calculate: 5^exp << exp res = res.shiftLeft(Integer.MAX_VALUE); longExp = exp - Integer.MAX_VALUE; while (longExp > Integer.MAX_VALUE) { res = res.shiftLeft(Integer.MAX_VALUE); longExp -= Integer.MAX_VALUE; } res = res.shiftLeft(intExp); return res; } /** * Multiplies a number by a power of five. * This method is used in {@code BigDecimal} class. * @param val the number to be multiplied * @param exp a positive {@code int} exponent * @return {@code val * 5exp} */ static TBigInteger multiplyByFivePow(TBigInteger val, int exp) { // PRE: exp >= 0 if (exp < fivePows.length) { return multiplyByPositiveInt(val, fivePows[exp]); } else if (exp < bigFivePows.length) { return val.multiply(bigFivePows[exp]); } else {// Large powers of five return val.multiply(bigFivePows[1].pow(exp)); } } /** * Computes the value unsigned ((uint)a*(uint)b + (uint)c + (uint)d). This * method could improve the readability and performance of the code. * * @param a * parameter 1 * @param b * parameter 2 * @param c * parameter 3 * @param d * parameter 4 * @return value of expression */ static long unsignedMultAddAdd(int a, int b, int c, int d) { return (a & 0xFFFFFFFFL) * (b & 0xFFFFFFFFL) + (c & 0xFFFFFFFFL) + (d & 0xFFFFFFFFL); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy