Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.codename1.util;
/**
* Static library that provides all multiplication of {@link TBigInteger} methods.
*/
class TMultiplication {
/** Just to denote that this class can't be instantiated. */
private TMultiplication() {}
/**
* Break point in digits (number of {@code int} elements)
* between Karatsuba and Pencil and Paper multiply.
*/
static final int whenUseKaratsuba = 63; // an heuristic value
/**
* An array with powers of ten that fit in the type {@code int}.
* ({@code 10^0,10^1,...,10^9})
*/
static final int tenPows[] = {
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000
};
/**
* An array with powers of five that fit in the type {@code int}.
* ({@code 5^0,5^1,...,5^13})
*/
static final int fivePows[] = {
1, 5, 25, 125, 625, 3125, 15625, 78125, 390625,
1953125, 9765625, 48828125, 244140625, 1220703125
};
/**
* An array with the first powers of ten in {@code BigInteger} version.
* ({@code 10^0,10^1,...,10^31})
*/
static final TBigInteger[] bigTenPows = new TBigInteger[32];
/**
* An array with the first powers of five in {@code BigInteger} version.
* ({@code 5^0,5^1,...,5^31})
*/
static final TBigInteger bigFivePows[] = new TBigInteger[32];
static {
int i;
long fivePow = 1L;
for (i = 0; i <= 18; i++) {
bigFivePows[i] = TBigInteger.valueOf(fivePow);
bigTenPows[i] = TBigInteger.valueOf(fivePow << i);
fivePow *= 5;
}
for (; i < bigTenPows.length; i++) {
bigFivePows[i] = bigFivePows[i - 1].multiply(bigFivePows[1]);
bigTenPows[i] = bigTenPows[i - 1].multiply(TBigInteger.TEN);
}
}
/**
* Performs a multiplication of two BigInteger and hides the algorithm used.
* @see TBigInteger#multiply(TBigInteger)
*/
static TBigInteger multiply(TBigInteger x, TBigInteger y) {
return karatsuba(x, y);
}
/**
* Performs the multiplication with the Karatsuba's algorithm.
* Karatsuba's algorithm:
*
* u = u1 * B + u0
* v = v1 * B + v0
*
*
* u*v = (u1 * v1) * B2 + ((u1 - u0) * (v0 - v1) + u1 * v1 +
* u0 * v0 ) * B + u0 * v0
*
* @param op1 first factor of the product
* @param op2 second factor of the product
* @return {@code op1 * op2}
* @see #multiply(TBigInteger, TBigInteger)
*/
static TBigInteger karatsuba(TBigInteger op1, TBigInteger op2) {
TBigInteger temp;
if (op2.numberLength > op1.numberLength) {
temp = op1;
op1 = op2;
op2 = temp;
}
if (op2.numberLength < whenUseKaratsuba) {
return multiplyPAP(op1, op2);
}
/* Karatsuba: u = u1*B + u0
* v = v1*B + v0
* u*v = (u1*v1)*B^2 + ((u1-u0)*(v0-v1) + u1*v1 + u0*v0)*B + u0*v0
*/
// ndiv2 = (op1.numberLength / 2) * 32
int ndiv2 = (op1.numberLength & 0xFFFFFFFE) << 4;
TBigInteger upperOp1 = op1.shiftRight(ndiv2);
TBigInteger upperOp2 = op2.shiftRight(ndiv2);
TBigInteger lowerOp1 = op1.subtract(upperOp1.shiftLeft(ndiv2));
TBigInteger lowerOp2 = op2.subtract(upperOp2.shiftLeft(ndiv2));
TBigInteger upper = karatsuba(upperOp1, upperOp2);
TBigInteger lower = karatsuba(lowerOp1, lowerOp2);
TBigInteger middle = karatsuba( upperOp1.subtract(lowerOp1),
lowerOp2.subtract(upperOp2));
middle = middle.add(upper).add(lower);
middle = middle.shiftLeft(ndiv2);
upper = upper.shiftLeft(ndiv2 << 1);
return upper.add(middle).add(lower);
}
/**
* Multiplies two BigIntegers.
* Implements traditional scholar algorithm described by Knuth.
*
*
*
*
*
*
*
*
A=
*
a3
*
a2
*
a1
*
a0
*
*
*
*
*
*
B=
*
*
b2
*
b1
*
b1
*
*
*
*
*
*
*
*
*
b0*a3
*
b0*a2
*
b0*a1
*
b0*a0
*
*
*
*
*
*
b1*a3
*
b1*a2
*
b1*a1
*
b1*a0
*
*
*
*
+
*
b2*a3
*
b2*a2
*
b2*a1
*
b2*a0
*
*
*
*
*
______
*
______
*
______
*
______
*
______
*
______
*
*
*
*
*
A*B=R=
*
r5
*
r4
*
r3
*
r2
*
r1
*
r0
*
*
*
*
*
*
*
*
* @param op1 first factor of the multiplication {@code op1 >= 0}
* @param op2 second factor of the multiplication {@code op2 >= 0}
* @return a {@code BigInteger} of value {@code op1 * op2}
*/
static TBigInteger multiplyPAP(TBigInteger a, TBigInteger b) {
// PRE: a >= b
int aLen = a.numberLength;
int bLen = b.numberLength;
int resLength = aLen + bLen;
int resSign = (a.sign != b.sign) ? -1 : 1;
// A special case when both numbers don't exceed int
if (resLength == 2) {
long val = unsignedMultAddAdd(a.digits[0], b.digits[0], 0, 0);
int valueLo = (int)val;
int valueHi = (int)(val >>> 32);
return ((valueHi == 0)
? new TBigInteger(resSign, valueLo)
: new TBigInteger(resSign, 2, new int[]{valueLo, valueHi}));
}
int[] aDigits = a.digits;
int[] bDigits = b.digits;
int resDigits[] = new int[resLength];
// Common case
multArraysPAP(aDigits, aLen, bDigits, bLen, resDigits);
TBigInteger result = new TBigInteger(resSign, resLength, resDigits);
result.cutOffLeadingZeroes();
return result;
}
static void multArraysPAP(int[] aDigits, int aLen, int[] bDigits, int bLen, int[] resDigits) {
if(aLen == 0 || bLen == 0) return;
if(aLen == 1) {
resDigits[bLen] = multiplyByInt(resDigits, bDigits, bLen, aDigits[0]);
} else if(bLen == 1) {
resDigits[aLen] = multiplyByInt(resDigits, aDigits, aLen, bDigits[0]);
} else {
multPAP(aDigits, bDigits, resDigits, aLen, bLen);
}
}
static void multPAP(int a[], int b[], int t[], int aLen, int bLen) {
if(a == b && aLen == bLen) {
square(a, aLen, t);
return;
}
for(int i = 0; i < aLen; i++){
long carry = 0;
int aI = a[i];
for (int j = 0; j < bLen; j++){
carry = unsignedMultAddAdd(aI, b[j], t[i+j], (int)carry);
t[i+j] = (int) carry;
carry >>>= 32;
}
t[i+bLen] = (int) carry;
}
}
/**
* Multiplies an array of integers by an integer value
* and saves the result in {@code res}.
* @param a the array of integers
* @param aSize the number of elements of intArray to be multiplied
* @param factor the multiplier
* @return the top digit of production
*/
private static int multiplyByInt(int res[], int a[], final int aSize, final int factor) {
long carry = 0;
for (int i = 0; i < aSize; i++) {
carry = unsignedMultAddAdd(a[i], factor, (int)carry, 0);
res[i] = (int)carry;
carry >>>= 32;
}
return (int)carry;
}
/**
* Multiplies an array of integers by an integer value.
* @param a the array of integers
* @param aSize the number of elements of intArray to be multiplied
* @param factor the multiplier
* @return the top digit of production
*/
static int multiplyByInt(int a[], final int aSize, final int factor) {
return multiplyByInt(a, a, aSize, factor);
}
/**
* Multiplies a number by a positive integer.
* @param val an arbitrary {@code BigInteger}
* @param factor a positive {@code int} number
* @return {@code val * factor}
*/
static TBigInteger multiplyByPositiveInt(TBigInteger val, int factor) {
int resSign = val.sign;
if (resSign == 0) {
return TBigInteger.ZERO;
}
int aNumberLength = val.numberLength;
int[] aDigits = val.digits;
if (aNumberLength == 1) {
long res = unsignedMultAddAdd(aDigits[0], factor, 0, 0);
int resLo = (int)res;
int resHi = (int)(res >>> 32);
return ((resHi == 0)
? new TBigInteger(resSign, resLo)
: new TBigInteger(resSign, 2, new int[]{resLo, resHi}));
}
// Common case
int resLength = aNumberLength + 1;
int resDigits[] = new int[resLength];
resDigits[aNumberLength] = multiplyByInt(resDigits, aDigits, aNumberLength, factor);
TBigInteger result = new TBigInteger(resSign, resLength, resDigits);
result.cutOffLeadingZeroes();
return result;
}
static TBigInteger pow(TBigInteger base, int exponent) {
// PRE: exp > 0
TBigInteger res = TBigInteger.ONE;
TBigInteger acc = base;
for (; exponent > 1; exponent >>= 1) {
if ((exponent & 1) != 0) {
// if odd, multiply one more time by acc
res = res.multiply(acc);
}
// acc = base^(2^i)
//a limit where karatsuba performs a faster square than the square algorithm
if ( acc.numberLength == 1 ){
acc = acc.multiply(acc); // square
}
else{
acc = new TBigInteger(1, square(acc.digits, acc.numberLength, new int [acc.numberLength<<1]));
}
}
// exponent == 1, multiply one more time
res = res.multiply(acc);
return res;
}
/**
* Performs a2
* @param a The number to square.
* @param aLen The length of the number to square.
*/
static int[] square(int[] a, int aLen, int[] res) {
long carry;
for(int i = 0; i < aLen; i++){
carry = 0;
for (int j = i+1; j < aLen; j++){
carry = unsignedMultAddAdd(a[i], a[j], res[i+j], (int)carry);
res[i+j] = (int) carry;
carry >>>= 32;
}
res[i+aLen] = (int) carry;
}
TBitLevel.shiftLeftOneBit(res, res, aLen << 1);
carry = 0;
for(int i = 0, index = 0; i < aLen; i++, index++){
carry = unsignedMultAddAdd(a[i], a[i], res[index],(int)carry);
res[index] = (int) carry;
carry >>>= 32;
index++;
carry += res[index] & 0xFFFFFFFFL;
res[index] = (int)carry;
carry >>>= 32;
}
return res;
}
/**
* Multiplies a number by a power of ten.
* This method is used in {@code BigDecimal} class.
* @param val the number to be multiplied
* @param exp a positive {@code long} exponent
* @return {@code val * 10exp}
*/
static TBigInteger multiplyByTenPow(TBigInteger val, long exp) {
// PRE: exp >= 0
return ((exp < tenPows.length)
? multiplyByPositiveInt(val, tenPows[(int)exp])
: val.multiply(powerOf10(exp)));
}
/**
* It calculates a power of ten, which exponent could be out of 32-bit range.
* Note that internally this method will be used in the worst case with
* an exponent equals to: {@code Integer.MAX_VALUE - Integer.MIN_VALUE}.
* @param exp the exponent of power of ten, it must be positive.
* @return a {@code BigInteger} with value {@code 10exp}.
*/
static TBigInteger powerOf10(long exp) {
// PRE: exp >= 0
int intExp = (int)exp;
// "SMALL POWERS"
if (exp < bigTenPows.length) {
// The largest power that fit in 'long' type
return bigTenPows[intExp];
} else if (exp <= 50) {
// To calculate: 10^exp
return TBigInteger.TEN.pow(intExp);
} else if (exp <= 1000) {
// To calculate: 5^exp * 2^exp
return bigFivePows[1].pow(intExp).shiftLeft(intExp);
}
// "LARGE POWERS"
/*
* To check if there is free memory to allocate a BigInteger of the
* estimated size, measured in bytes: 1 + [exp / log10(2)]
*/
long byteArraySize = 1 + (long)(exp / 2.4082399653118496);
if (byteArraySize > 1000000) {
throw new ArithmeticException("power of ten too big");
}
if (exp <= Integer.MAX_VALUE) {
// To calculate: 5^exp * 2^exp
return bigFivePows[1].pow(intExp).shiftLeft(intExp);
}
/*
* "HUGE POWERS"
*
* This branch probably won't be executed since the power of ten is too
* big.
*/
// To calculate: 5^exp
TBigInteger powerOfFive = bigFivePows[1].pow(Integer.MAX_VALUE);
TBigInteger res = powerOfFive;
long longExp = exp - Integer.MAX_VALUE;
intExp = (int)(exp % Integer.MAX_VALUE);
while (longExp > Integer.MAX_VALUE) {
res = res.multiply(powerOfFive);
longExp -= Integer.MAX_VALUE;
}
res = res.multiply(bigFivePows[1].pow(intExp));
// To calculate: 5^exp << exp
res = res.shiftLeft(Integer.MAX_VALUE);
longExp = exp - Integer.MAX_VALUE;
while (longExp > Integer.MAX_VALUE) {
res = res.shiftLeft(Integer.MAX_VALUE);
longExp -= Integer.MAX_VALUE;
}
res = res.shiftLeft(intExp);
return res;
}
/**
* Multiplies a number by a power of five.
* This method is used in {@code BigDecimal} class.
* @param val the number to be multiplied
* @param exp a positive {@code int} exponent
* @return {@code val * 5exp}
*/
static TBigInteger multiplyByFivePow(TBigInteger val, int exp) {
// PRE: exp >= 0
if (exp < fivePows.length) {
return multiplyByPositiveInt(val, fivePows[exp]);
} else if (exp < bigFivePows.length) {
return val.multiply(bigFivePows[exp]);
} else {// Large powers of five
return val.multiply(bigFivePows[1].pow(exp));
}
}
/**
* Computes the value unsigned ((uint)a*(uint)b + (uint)c + (uint)d). This
* method could improve the readability and performance of the code.
*
* @param a
* parameter 1
* @param b
* parameter 2
* @param c
* parameter 3
* @param d
* parameter 4
* @return value of expression
*/
static long unsignedMultAddAdd(int a, int b, int c, int d) {
return (a & 0xFFFFFFFFL) * (b & 0xFFFFFFFFL) + (c & 0xFFFFFFFFL) + (d & 0xFFFFFFFFL);
}
}