All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.codename1.util.regex.RE Maven / Gradle / Ivy

There is a newer version: 7.0.167
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.codename1.util.regex;

import java.util.ArrayList;

/**
 * RE is an efficient, lightweight regular expression evaluator/matcher
 * class. Regular expressions are pattern descriptions which enable
 * sophisticated matching of strings.  In addition to being able to
 * match a string against a pattern, you can also extract parts of the
 * match.  This is especially useful in text parsing! Details on the
 * syntax of regular expression patterns are given below.
 *
 * 

* To compile a regular expression (RE), you can simply construct an RE * matcher object from the string specification of the pattern, like this: * *

 *  RE r = new RE("a*b");
 * 
* *

* Once you have done this, you can call either of the RE.match methods to * perform matching on a String. For example: * *

 *  boolean matched = r.match("aaaab");
 * 
* * will cause the boolean matched to be set to true because the * pattern "a*b" matches the string "aaaab". * *

* If you were interested in the number of a's which matched the * first part of our example expression, you could change the expression to * "(a*)b". Then when you compiled the expression and matched it against * something like "xaaaab", you would get results like this: * *

 *  RE r = new RE("(a*)b");                  // Compile expression
 *  boolean matched = r.match("xaaaab");     // Match against "xaaaab"
 *
 *  String wholeExpr = r.getParen(0);        // wholeExpr will be 'aaaab'
 *  String insideParens = r.getParen(1);     // insideParens will be 'aaaa'
 *
 *  int startWholeExpr = r.getParenStart(0); // startWholeExpr will be index 1
 *  int endWholeExpr = r.getParenEnd(0);     // endWholeExpr will be index 6
 *  int lenWholeExpr = r.getParenLength(0);  // lenWholeExpr will be 5
 *
 *  int startInside = r.getParenStart(1);    // startInside will be index 1
 *  int endInside = r.getParenEnd(1);        // endInside will be index 5
 *  int lenInside = r.getParenLength(1);     // lenInside will be 4
 * 
* * You can also refer to the contents of a parenthesized expression * within a regular expression itself. This is called a * 'backreference'. The first backreference in a regular expression is * denoted by \1, the second by \2 and so on. So the expression: * *
 *  ([0-9]+)=\1
 * 
* * will match any string of the form n=n (like 0=0 or 2=2). * *

* The full regular expression syntax accepted by RE is described here: * *

 *
 *  Characters
 *
 *    unicodeChar   Matches any identical unicode character
 *    \                    Used to quote a meta-character (like '*')
 *    \\                   Matches a single '\' character
 *    \0nnn                Matches a given octal character
 *    \xhh                 Matches a given 8-bit hexadecimal character
 *    \\uhhhh              Matches a given 16-bit hexadecimal character
 *    \t                   Matches an ASCII tab character
 *    \n                   Matches an ASCII newline character
 *    \r                   Matches an ASCII return character
 *    \f                   Matches an ASCII form feed character
 *
 *
 *  Character Classes
 *
 *    [abc]                Simple character class
 *    [a-zA-Z]             Character class with ranges
 *    [^abc]               Negated character class
 * 
* * NOTE: Incomplete ranges will be interpreted as "starts * from zero" or "ends with last character". *
* I.e. [-a] is the same as [\\u0000-a], and [a-] is the same as [a-\\uFFFF], * [-] means "all characters". * *
 *
 *  Standard POSIX Character Classes
 *
 *    [:alnum:]            Alphanumeric characters.
 *    [:alpha:]            Alphabetic characters.
 *    [:blank:]            Space and tab characters.
 *    [:cntrl:]            Control characters.
 *    [:digit:]            Numeric characters.
 *    [:graph:]            Characters that are printable and are also visible.
 *                         (A space is printable, but not visible, while an
 *                         `a' is both.)
 *    [:lower:]            Lower-case alphabetic characters.
 *    [:print:]            Printable characters (characters that are not
 *                         control characters.)
 *    [:punct:]            Punctuation characters (characters that are not letter,
 *                         digits, control characters, or space characters).
 *    [:space:]            Space characters (such as space, tab, and formfeed,
 *                         to name a few).
 *    [:upper:]            Upper-case alphabetic characters.
 *    [:xdigit:]           Characters that are hexadecimal digits.
 *
 *
 *  Non-standard POSIX-style Character Classes
 *
 *    [:javastart:]        Start of a Java identifier
 *    [:javapart:]         Part of a Java identifier
 *
 *
 *  Predefined Classes
 *
 *    .         Matches any character other than newline
 *    \w        Matches a "word" character (alphanumeric plus "_")
 *    \W        Matches a non-word character
 *    \s        Matches a whitespace character
 *    \S        Matches a non-whitespace character
 *    \d        Matches a digit character
 *    \D        Matches a non-digit character
 *
 *
 *  Boundary Matchers
 *
 *    ^         Matches only at the beginning of a line
 *    $         Matches only at the end of a line
 *    \b        Matches only at a word boundary
 *    \B        Matches only at a non-word boundary
 *
 *
 *  Greedy Closures
 *
 *    A*        Matches A 0 or more times (greedy)
 *    A+        Matches A 1 or more times (greedy)
 *    A?        Matches A 1 or 0 times (greedy)
 *    A{n}      Matches A exactly n times (greedy)
 *    A{n,}     Matches A at least n times (greedy)
 *    A{n,m}    Matches A at least n but not more than m times (greedy)
 *
 *
 *  Reluctant Closures
 *
 *    A*?       Matches A 0 or more times (reluctant)
 *    A+?       Matches A 1 or more times (reluctant)
 *    A??       Matches A 0 or 1 times (reluctant)
 *
 *
 *  Logical Operators
 *
 *    AB        Matches A followed by B
 *    A|B       Matches either A or B
 *    (A)       Used for subexpression grouping
 *   (?:A)      Used for subexpression clustering (just like grouping but
 *              no backrefs)
 *
 *
 *  Backreferences
 *
 *    \1    Backreference to 1st parenthesized subexpression
 *    \2    Backreference to 2nd parenthesized subexpression
 *    \3    Backreference to 3rd parenthesized subexpression
 *    \4    Backreference to 4th parenthesized subexpression
 *    \5    Backreference to 5th parenthesized subexpression
 *    \6    Backreference to 6th parenthesized subexpression
 *    \7    Backreference to 7th parenthesized subexpression
 *    \8    Backreference to 8th parenthesized subexpression
 *    \9    Backreference to 9th parenthesized subexpression
 * 
* *

* All closure operators (+, *, ?, {m,n}) are greedy by default, meaning * that they match as many elements of the string as possible without * causing the overall match to fail. If you want a closure to be * reluctant (non-greedy), you can simply follow it with a '?'. A * reluctant closure will match as few elements of the string as * possible when finding matches. {m,n} closures don't currently * support reluctancy. * *

* Line terminators *
* A line terminator is a one- or two-character sequence that marks * the end of a line of the input character sequence. The following * are recognized as line terminators: *

    *
  • A newline (line feed) character ('\n'),
  • *
  • A carriage-return character followed immediately by a newline character ("\r\n"),
  • *
  • A standalone carriage-return character ('\r'),
  • *
  • A next-line character ('\u0085'),
  • *
  • A line-separator character ('\u2028'), or
  • *
  • A paragraph-separator character ('\u2029).
  • *
* *

* RE runs programs compiled by the RECompiler class. But the RE * matcher class does not include the actual regular expression compiler * for reasons of efficiency. You can construct a single RECompiler object and * re-use it to compile each expression. Similarly, you can change the * program run by a given matcher object at any time. However, RE and * RECompiler are not threadsafe (for efficiency reasons, and because * requiring thread safety in this class is deemed to be a rare * requirement), so you will need to construct a separate compiler or * matcher object for each thread (unless you do thread synchronization * yourself). Once expression compiled into the REProgram object, REProgram * can be safely shared across multiple threads and RE objects. * *


* * * ISSUES: * *

    *
  • com.weusours.util.re is not currently compatible with all * standard POSIX regcomp flags
  • *
  • com.weusours.util.re does not support POSIX equivalence classes * ([=foo=] syntax) (I18N/locale issue)
  • *
  • com.weusours.util.re does not support nested POSIX character * classes (definitely should, but not completely trivial)
  • *
  • com.weusours.util.re Does not support POSIX character collation * concepts ([.foo.] syntax) (I18N/locale issue)
  • *
  • Should there be different matching styles (simple, POSIX, Perl etc?)
  • *
  • Should RE support character iterators (for backwards RE matching!)?
  • *
  • Should RE support reluctant {m,n} closures (does anyone care)?
  • *
  • Not *all* possibilities are considered for greediness when backreferences * are involved (as POSIX suggests should be the case). The POSIX RE * "(ac*)c*d[ac]*\1", when matched against "acdacaa" should yield a match * of acdacaa where \1 is "a". This is not the case in this RE package, * and actually Perl doesn't go to this extent either! Until someone * actually complains about this, I'm not sure it's worth "fixing". * If it ever is fixed, test #137 in RETest.txt should be updated.
  • *
* * * * @see RECompiler * * @author Jonathan Locke * @author Tobias Schäfer */ public class RE { /** * Specifies normal, case-sensitive matching behaviour. */ public static final int MATCH_NORMAL = 0x0000; /** * Flag to indicate that matching should be case-independent (folded) */ public static final int MATCH_CASEINDEPENDENT = 0x0001; /** * Newlines should match as BOL/EOL (^ and $) */ public static final int MATCH_MULTILINE = 0x0002; /** * Consider all input a single body of text - newlines are matched by . */ public static final int MATCH_SINGLELINE = 0x0004; /************************************************ * * * The format of a node in a program is: * * * * [ OPCODE ] [ OPDATA ] [ OPNEXT ] [ OPERAND ] * * * * char OPCODE - instruction * * char OPDATA - modifying data * * char OPNEXT - next node (relative offset) * * * ************************************************/ // Opcode Char Opdata/Operand Meaning // ---------- ---------- --------------- -------------------------------------------------- static final char OP_END = 'E'; // end of program static final char OP_BOL = '^'; // match only if at beginning of line static final char OP_EOL = '$'; // match only if at end of line static final char OP_ANY = '.'; // match any single character except newline static final char OP_ANYOF = '['; // count/ranges match any char in the list of ranges static final char OP_BRANCH = '|'; // node match this alternative or the next one static final char OP_ATOM = 'A'; // length/string length of string followed by string itself static final char OP_STAR = '*'; // node kleene closure static final char OP_PLUS = '+'; // node positive closure static final char OP_MAYBE = '?'; // node optional closure static final char OP_ESCAPE = '\\'; // escape special escape code char class (escape is E_* code) static final char OP_OPEN = '('; // number nth opening paren static final char OP_OPEN_CLUSTER = '<'; // opening cluster static final char OP_CLOSE = ')'; // number nth closing paren static final char OP_CLOSE_CLUSTER = '>'; // closing cluster static final char OP_BACKREF = '#'; // number reference nth already matched parenthesized string static final char OP_GOTO = 'G'; // nothing but a (back-)pointer static final char OP_NOTHING = 'N'; // match null string such as in '(a|)' static final char OP_CONTINUE = 'C'; // continue to the following command (ignore next) static final char OP_RELUCTANTSTAR = '8'; // none/expr reluctant '*' (mnemonic for char is unshifted '*') static final char OP_RELUCTANTPLUS = '='; // none/expr reluctant '+' (mnemonic for char is unshifted '+') static final char OP_RELUCTANTMAYBE = '/'; // none/expr reluctant '?' (mnemonic for char is unshifted '?') static final char OP_POSIXCLASS = 'P'; // classid one of the posix character classes // Escape codes static final char E_ALNUM = 'w'; // Alphanumeric static final char E_NALNUM = 'W'; // Non-alphanumeric static final char E_BOUND = 'b'; // Word boundary static final char E_NBOUND = 'B'; // Non-word boundary static final char E_SPACE = 's'; // Whitespace static final char E_NSPACE = 'S'; // Non-whitespace static final char E_DIGIT = 'd'; // Digit static final char E_NDIGIT = 'D'; // Non-digit // Posix character classes static final char POSIX_CLASS_ALNUM = 'w'; // Alphanumerics static final char POSIX_CLASS_ALPHA = 'a'; // Alphabetics static final char POSIX_CLASS_BLANK = 'b'; // Blanks static final char POSIX_CLASS_CNTRL = 'c'; // Control characters static final char POSIX_CLASS_DIGIT = 'd'; // Digits static final char POSIX_CLASS_GRAPH = 'g'; // Graphic characters static final char POSIX_CLASS_LOWER = 'l'; // Lowercase characters static final char POSIX_CLASS_PRINT = 'p'; // Printable characters static final char POSIX_CLASS_PUNCT = '!'; // Punctuation static final char POSIX_CLASS_SPACE = 's'; // Spaces static final char POSIX_CLASS_UPPER = 'u'; // Uppercase characters static final char POSIX_CLASS_XDIGIT = 'x'; // Hexadecimal digits static final char POSIX_CLASS_JSTART = 'j'; // Java identifier start static final char POSIX_CLASS_JPART = 'k'; // Java identifier part // Limits static final int maxNode = 65536; // Maximum number of nodes in a program static final int MAX_PAREN = 16; // Number of paren pairs (only 9 can be backrefs) // Node layout constants static final int offsetOpcode = 0; // Opcode offset (first character) static final int offsetOpdata = 1; // Opdata offset (second char) static final int offsetNext = 2; // Next index offset (third char) static final int nodeSize = 3; // Node size (in chars) // State of current program REProgram program; // Compiled regular expression 'program' transient CharacterIterator search; // The string being matched against int matchFlags; // Match behaviour flags int maxParen = MAX_PAREN; // Parenthesized subexpressions transient int parenCount; // Number of subexpressions matched (num open parens + 1) transient int start0; // Cache of start[0] transient int end0; // Cache of start[0] transient int start1; // Cache of start[1] transient int end1; // Cache of start[1] transient int start2; // Cache of start[2] transient int end2; // Cache of start[2] transient int[] startn; // Lazy-alloced array of sub-expression starts transient int[] endn; // Lazy-alloced array of sub-expression ends // Backreferences transient int[] startBackref; // Lazy-alloced array of backref starts transient int[] endBackref; // Lazy-alloced array of backref ends /** * Constructs a regular expression matcher from a String by compiling it * using a new instance of RECompiler. If you will be compiling many * expressions, you may prefer to use a single RECompiler object instead. * * @param pattern The regular expression pattern to compile. * @exception RESyntaxException Thrown if the regular expression has invalid syntax. * @see RECompiler */ public RE(String pattern) throws RESyntaxException { this(pattern, MATCH_NORMAL); } /** * Constructs a regular expression matcher from a String by compiling it * using a new instance of RECompiler. If you will be compiling many * expressions, you may prefer to use a single RECompiler object instead. * * @param pattern The regular expression pattern to compile. * @param matchFlags The matching style * @exception RESyntaxException Thrown if the regular expression has invalid syntax. * @see RECompiler */ public RE(String pattern, int matchFlags) throws RESyntaxException { this(new RECompiler().compile(pattern), matchFlags); } /** * Construct a matcher for a pre-compiled regular expression from program * (bytecode) data. Permits special flags to be passed in to modify matching * behaviour. * * @param program Compiled regular expression program (see RECompiler) * @param matchFlags One or more of the RE match behaviour flags (RE.MATCH_*): * *
     *   MATCH_NORMAL              // Normal (case-sensitive) matching
     *   MATCH_CASEINDEPENDENT     // Case folded comparisons
     *   MATCH_MULTILINE           // Newline matches as BOL/EOL
     * 
* * @see RECompiler * @see REProgram */ public RE(REProgram program, int matchFlags) { setProgram(program); setMatchFlags(matchFlags); } /** * Construct a matcher for a pre-compiled regular expression from program * (bytecode) data. * * @param program Compiled regular expression program * @see RECompiler */ public RE(REProgram program) { this(program, MATCH_NORMAL); } /** * Constructs a regular expression matcher with no initial program. * This is likely to be an uncommon practice, but is still supported. */ public RE() { this((REProgram) null, MATCH_NORMAL); } /** * Converts a 'simplified' regular expression to a full regular expression * * @param pattern The pattern to convert * @return The full regular expression */ public static String simplePatternToFullRegularExpression(String pattern) { StringBuffer buf = new StringBuffer(); for (int i = 0; i < pattern.length(); i++) { char c = pattern.charAt(i); switch (c) { case '*': buf.append(".*"); break; case '.': case '[': case ']': case '\\': case '+': case '?': case '{': case '}': case '$': case '^': case '|': case '(': case ')': buf.append('\\'); default: buf.append(c); break; } } return buf.toString(); } /** * Sets match behaviour flags which alter the way RE does matching. * @param matchFlags One or more of the RE match behaviour flags (RE.MATCH_*): * *
     *   MATCH_NORMAL              // Normal (case-sensitive) matching
     *   MATCH_CASEINDEPENDENT     // Case folded comparisons
     *   MATCH_MULTILINE           // Newline matches as BOL/EOL
     * 
*/ public void setMatchFlags(int matchFlags) { this.matchFlags = matchFlags; } /** * Returns the current match behaviour flags. * @return Current match behaviour flags (RE.MATCH_*). * *
     *   MATCH_NORMAL              // Normal (case-sensitive) matching
     *   MATCH_CASEINDEPENDENT     // Case folded comparisons
     *   MATCH_MULTILINE           // Newline matches as BOL/EOL
     * 
* * @see #setMatchFlags */ public int getMatchFlags() { return matchFlags; } /** * Sets the current regular expression program used by this matcher object. * * @param program Regular expression program compiled by RECompiler. * @see RECompiler * @see REProgram */ public void setProgram(REProgram program) { this.program = program; if (program != null && program.maxParens != -1) { this.maxParen = program.maxParens; } else { this.maxParen = MAX_PAREN; } } /** * Returns the current regular expression program in use by this matcher object. * * @return Regular expression program * @see #setProgram */ public REProgram getProgram() { return program; } /** * Returns the number of parenthesized subexpressions available after a successful match. * * @return Number of available parenthesized subexpressions */ public int getParenCount() { return parenCount; } /** * Gets the contents of a parenthesized subexpression after a successful match. * * @param which Nesting level of subexpression * @return String */ public String getParen(int which) { int start; if (which < parenCount && (start = getParenStart(which)) >= 0) { return search.substring(start, getParenEnd(which)); } return null; } /** * Returns the start index of a given paren level. * * @param which Nesting level of subexpression * @return String index */ public final int getParenStart(int which) { if (which < parenCount) { switch (which) { case 0: return start0; case 1: return start1; case 2: return start2; default: if (startn == null) { allocParens(); } return startn[which]; } } return -1; } /** * Returns the end index of a given paren level. * * @param which Nesting level of subexpression * @return String index */ public final int getParenEnd(int which) { if (which < parenCount) { switch (which) { case 0: return end0; case 1: return end1; case 2: return end2; default: if (endn == null) { allocParens(); } return endn[which]; } } return -1; } /** * Returns the length of a given paren level. * * @param which Nesting level of subexpression * @return Number of characters in the parenthesized subexpression */ public final int getParenLength(int which) { if (which < parenCount) { return getParenEnd(which) - getParenStart(which); } return -1; } /** * Sets the start of a paren level * * @param which Which paren level * @param i Index in input array */ protected final void setParenStart(int which, int i) { if (which < parenCount) { switch (which) { case 0: start0 = i; break; case 1: start1 = i; break; case 2: start2 = i; break; default: if (startn == null) { allocParens(); } startn[which] = i; break; } } } /** * Sets the end of a paren level * * @param which Which paren level * @param i Index in input array */ protected final void setParenEnd(int which, int i) { if (which < parenCount) { switch (which) { case 0: end0 = i; break; case 1: end1 = i; break; case 2: end2 = i; break; default: if (endn == null) { allocParens(); } endn[which] = i; break; } } } /** * Throws an Error representing an internal error condition probably resulting * from a bug in the regular expression compiler (or possibly data corruption). * In practice, this should be very rare. * * @param s Error description */ protected void internalError(String s) throws Error { throw new Error("RE internal error: " + s); } /** * Performs lazy allocation of subexpression arrays */ private void allocParens() { // Allocate arrays for subexpressions startn = new int[maxParen]; endn = new int[maxParen]; // Set sub-expression pointers to invalid values for (int i = 0; i < maxParen; i++) { startn[i] = -1; endn[i] = -1; } } /** * Try to match a string against a subset of nodes in the program * * @param firstNode Node to start at in program * @param lastNode Last valid node (used for matching a subexpression without * matching the rest of the program as well). * @param idxStart Starting position in character array * @return Final input array index if match succeeded. -1 if not. */ protected int matchNodes(int firstNode, int lastNode, int idxStart) { // Our current place in the string int idx = idxStart; // Loop while node is valid int next, opcode, opdata; int idxNew; char[] instruction = program.instruction; for (int node = firstNode; node < lastNode;) { opcode = instruction[node /* + offsetOpcode */]; next = node + (short) instruction[node + offsetNext]; opdata = instruction[node + offsetOpdata]; switch (opcode) { case OP_MAYBE: case OP_STAR: { // Try to match the following subexpr. If it matches: // MAYBE: Continues matching rest of the expression // STAR: Points back here to repeat subexpr matching if ((idxNew = matchNodes(node + nodeSize, maxNode, idx)) != -1) { return idxNew; } // If failed, just continue with the rest of expression break; } case OP_PLUS: { // Try to match the subexpr again (and again (and ... if ((idxNew = matchNodes(next, maxNode, idx)) != -1) { return idxNew; } // If failed, just continue with the rest of expression // Rest is located at the next pointer of the next instruction // (which must be OP_CONTINUE) node = next + (short) instruction[next + offsetNext]; continue; } case OP_RELUCTANTMAYBE: case OP_RELUCTANTSTAR: { // Try to match the rest without using the reluctant subexpr if ((idxNew = matchNodes(next, maxNode, idx)) != -1) { return idxNew; } // Try reluctant subexpr. If it matches: // RELUCTANTMAYBE: Continues matching rest of the expression // RELUCTANTSTAR: Points back here to repeat reluctant star matching return matchNodes(node + nodeSize, next, idx); } case OP_RELUCTANTPLUS: { // Continue matching the rest without using the reluctant subexpr if ((idxNew = matchNodes(next + (short) instruction[next + offsetNext], maxNode, idx)) != -1) { return idxNew; } // Try to match subexpression again break; } case OP_OPEN: // Match subexpression if ((program.flags & REProgram.OPT_HASBACKREFS) != 0) { startBackref[opdata] = idx; } if ((idxNew = matchNodes(next, maxNode, idx)) != -1) { // Increase valid paren count if (opdata >= parenCount) { parenCount = opdata + 1; } // Don't set paren if already set later on if (getParenStart(opdata) == -1) { setParenStart(opdata, idx); } } return idxNew; case OP_CLOSE: // Done matching subexpression if ((program.flags & REProgram.OPT_HASBACKREFS) != 0) { endBackref[opdata] = idx; } if ((idxNew = matchNodes(next, maxNode, idx)) != -1) { // Increase valid paren count if (opdata >= parenCount) { parenCount = opdata + 1; } // Don't set paren if already set later on if (getParenEnd(opdata) == -1) { setParenEnd(opdata, idx); } } return idxNew; case OP_BACKREF: { // Get the start and end of the backref int s = startBackref[opdata]; int e = endBackref[opdata]; // We don't know the backref yet if (s == -1 || e == -1) { return -1; } // The backref is empty size if (s == e) { break; } // Get the length of the backref int l = e - s; // If there's not enough input left, give up. if (search.isEnd(idx + l - 1)) { return -1; } // Case fold the backref? final boolean caseFold = ((matchFlags & MATCH_CASEINDEPENDENT) != 0); // Compare backref to input for (int i = 0; i < l; i++) { if (compareChars(search.charAt(idx++), search.charAt(s + i), caseFold) != 0) { return -1; } } } break; case OP_BOL: // Fail if we're not at the start of the string if (idx != 0) { // If we're multiline matching, we could still be at the start of a line if ((matchFlags & MATCH_MULTILINE) == MATCH_MULTILINE) { // Continue if at the start of a line if (isNewline(idx - 1)) { break; } } return -1; } break; case OP_EOL: // If we're not at the end of string if (!search.isEnd(0) && !search.isEnd(idx)) { // If we're multi-line matching if ((matchFlags & MATCH_MULTILINE) == MATCH_MULTILINE) { // Continue if we're at the end of a line if (isNewline(idx)) { break; } } return -1; } break; case OP_ESCAPE: // Which escape? switch (opdata) { // Word boundary match case E_NBOUND: case E_BOUND: { char cLast = ((idx == 0) ? '\n' : search.charAt(idx - 1)); char cNext = ((search.isEnd(idx)) ? '\n' : search.charAt(idx)); if ((RECharacter.isLetterOrDigit(cLast) == RECharacter.isLetterOrDigit(cNext)) == (opdata == E_BOUND)) { return -1; } } break; // Alpha-numeric, digit, space, javaLetter, javaLetterOrDigit case E_ALNUM: case E_NALNUM: case E_DIGIT: case E_NDIGIT: case E_SPACE: case E_NSPACE: // Give up if out of input if (search.isEnd(idx)) { return -1; } char c = search.charAt(idx); // Switch on escape switch (opdata) { case E_ALNUM: case E_NALNUM: if (!((RECharacter.isLetterOrDigit(c) || c == '_') == (opdata == E_ALNUM))) { return -1; } break; case E_DIGIT: case E_NDIGIT: if (!(RECharacter.isDigit(c) == (opdata == E_DIGIT))) { return -1; } break; case E_SPACE: case E_NSPACE: if (!(RECharacter.isWhitespace(c) == (opdata == E_SPACE))) { return -1; } break; } idx++; break; default: internalError("Unrecognized escape '" + opdata + "'"); } break; case OP_ANY: if ((matchFlags & MATCH_SINGLELINE) == MATCH_SINGLELINE) { // Match anything if (search.isEnd(idx)) { return -1; } } else { // Match anything but a newline if (search.isEnd(idx) || isNewline(idx)) { return -1; } } idx++; break; case OP_ATOM: { // Match an atom value if (search.isEnd(idx)) { return -1; } // Get length of atom and starting index // int lenAtom = opdata; int startAtom = node + nodeSize; // Give up if not enough input remains to have a match if (search.isEnd(opdata + idx - 1)) { return -1; } // Match atom differently depending on casefolding flag final boolean caseFold = ((matchFlags & MATCH_CASEINDEPENDENT) != 0); for (int i = 0; i < opdata; i++) { if (compareChars(search.charAt(idx++), instruction[startAtom + i], caseFold) != 0) { return -1; } } } break; case OP_POSIXCLASS: { // Out of input? if (search.isEnd(idx)) { return -1; } switch (opdata) { case POSIX_CLASS_ALNUM: if (!RECharacter.isLetterOrDigit(search.charAt(idx))) { return -1; } break; case POSIX_CLASS_ALPHA: if (!RECharacter.isLetter(search.charAt(idx))) { return -1; } break; case POSIX_CLASS_DIGIT: if (!RECharacter.isDigit(search.charAt(idx))) { return -1; } break; case POSIX_CLASS_BLANK: // JWL - bugbug: is this right?? if (!RECharacter.isSpaceChar(search.charAt(idx))) { return -1; } break; case POSIX_CLASS_SPACE: if (!RECharacter.isWhitespace(search.charAt(idx))) { return -1; } break; case POSIX_CLASS_CNTRL: if (RECharacter.getType(search.charAt(idx)) != RECharacter.CONTROL) { return -1; } break; case POSIX_CLASS_GRAPH: // JWL - bugbug??? switch (RECharacter.getType(search.charAt(idx))) { case RECharacter.MATH_SYMBOL: case RECharacter.CURRENCY_SYMBOL: case RECharacter.MODIFIER_SYMBOL: case RECharacter.OTHER_SYMBOL: break; default: return -1; } break; case POSIX_CLASS_LOWER: if (RECharacter.getType(search.charAt(idx)) != RECharacter.LOWERCASE_LETTER) { return -1; } break; case POSIX_CLASS_UPPER: if (RECharacter.getType(search.charAt(idx)) != RECharacter.UPPERCASE_LETTER) { return -1; } break; case POSIX_CLASS_PRINT: if (RECharacter.getType(search.charAt(idx)) == RECharacter.CONTROL) { return -1; } break; case POSIX_CLASS_PUNCT: { int type = RECharacter.getType(search.charAt(idx)); switch (type) { case RECharacter.DASH_PUNCTUATION: case RECharacter.START_PUNCTUATION: case RECharacter.END_PUNCTUATION: case RECharacter.CONNECTOR_PUNCTUATION: case RECharacter.OTHER_PUNCTUATION: break; default: return -1; } } break; case POSIX_CLASS_XDIGIT: // JWL - bugbug?? { boolean isXDigit = ((search.charAt(idx) >= '0' && search.charAt(idx) <= '9') || (search.charAt(idx) >= 'a' && search.charAt(idx) <= 'f') || (search.charAt(idx) >= 'A' && search.charAt(idx) <= 'F')); if (!isXDigit) { return -1; } } break; case POSIX_CLASS_JSTART: if (!RECharacter.isJavaIdentifierStart(search.charAt(idx))) { return -1; } break; case POSIX_CLASS_JPART: if (!RECharacter.isJavaIdentifierPart(search.charAt(idx))) { return -1; } break; default: internalError("Bad posix class"); break; } // Matched. idx++; } break; case OP_ANYOF: { // Out of input? if (search.isEnd(idx)) { return -1; } // Get character to match against character class and maybe casefold char c = search.charAt(idx); boolean caseFold = (matchFlags & MATCH_CASEINDEPENDENT) != 0; // Loop through character class checking our match character int idxRange = node + nodeSize; int idxEnd = idxRange + (opdata * 2); boolean match = false; for (int i = idxRange; !match && i < idxEnd;) { // Get start, end and match characters char s = instruction[i++]; char e = instruction[i++]; match = ((compareChars(c, s, caseFold) >= 0) && (compareChars(c, e, caseFold) <= 0)); } // Fail if we didn't match the character class if (!match) { return -1; } idx++; } break; case OP_BRANCH: { // Check for choices // FIXME Dead code - only reason to keep is backward compat with pre-compiled exprs. Remove? if (instruction[next /* + offsetOpcode */] != OP_BRANCH) { // If there aren't any other choices, just evaluate this branch. node += nodeSize; continue; } // Try all available branches int nextBranch; do { // Try matching the branch against the string if ((idxNew = matchNodes(node + nodeSize, maxNode, idx)) != -1) { return idxNew; } // Go to next branch (if any) nextBranch = (short) instruction[node + offsetNext]; node += nextBranch; } while (nextBranch != 0 && (instruction[node /* + offsetOpcode */] == OP_BRANCH)); // Failed to match any branch! return -1; } case OP_OPEN_CLUSTER: case OP_CLOSE_CLUSTER: // starting or ending the matching of a subexpression which has no backref. case OP_NOTHING: case OP_GOTO: // Just advance to the next node without doing anything break; case OP_CONTINUE: // Advance to the following node node += nodeSize; continue; case OP_END: // Match has succeeded! setParenEnd(0, idx); return idx; default: // Corrupt program internalError("Invalid opcode '" + opcode + "'"); } // Advance to the next node in the program node = next; } // We "should" never end up here internalError("Corrupt program"); return -1; } /** * Match the current regular expression program against the current * input string, starting at index i of the input string. This method * is only meant for internal use. * * @param i The input string index to start matching at * @return True if the input matched the expression */ protected boolean matchAt(int i) { // Initialize start pointer, paren cache and paren count start0 = -1; end0 = -1; start1 = -1; end1 = -1; start2 = -1; end2 = -1; startn = null; endn = null; parenCount = 1; setParenStart(0, i); // Allocate backref arrays (unless optimizations indicate otherwise) if ((program.flags & REProgram.OPT_HASBACKREFS) != 0) { startBackref = new int[maxParen]; endBackref = new int[maxParen]; } // Match against string int idx; if ((idx = matchNodes(0, maxNode, i)) != -1) { setParenEnd(0, idx); return true; } // Didn't match parenCount = 0; return false; } /** * Matches the current regular expression program against a character array, * starting at a given index. * * @param search String to match against * @param i Index to start searching at * @return True if string matched */ public boolean match(String search, int i) { return match(new StringCharacterIterator(search), i); } /** * Matches the current regular expression program against a character array, * starting at a given index. * * @param search String to match against * @param i Index to start searching at * @return True if string matched */ public boolean match(CharacterIterator search, int i) { // There is no compiled program to search with! if (program == null) { // This should be uncommon enough to be an error case rather // than an exception (which would have to be handled everywhere) internalError("No RE program to run!"); } // Save string to search this.search = search; // Can we optimize the search by looking for new lines? if ((program.flags & REProgram.OPT_HASBOL) == REProgram.OPT_HASBOL) { // Non multi-line matching with BOL: Must match at '0' index if ((matchFlags & MATCH_MULTILINE) == 0) { return i == 0 && matchAt(i); } // Multi-line matching with BOL: Seek to next line for (; !search.isEnd(i); i++) { // Skip if we are at the beginning of the line if (isNewline(i)) { continue; } // Match at the beginning of the line if (matchAt(i)) { return true; } // Skip to the end of line for (; !search.isEnd(i); i++) { if (isNewline(i)) { break; } } } return false; } // Can we optimize the search by looking for a prefix string? if (program.prefix == null) { // Unprefixed matching must try for a match at each character for (; !search.isEnd(i - 1); i++) { // Try a match at index i if (matchAt(i)) { return true; } } return false; } else { // Prefix-anchored matching is possible boolean caseIndependent = (matchFlags & MATCH_CASEINDEPENDENT) != 0; char[] prefix = program.prefix; for (; !search.isEnd(i + prefix.length - 1); i++) { int j = i; int k = 0; boolean match; do { // If there's a mismatch of any character in the prefix, give up match = (compareChars(search.charAt(j++), prefix[k++], caseIndependent) == 0); } while (match && k < prefix.length); // See if the whole prefix string matched if (k == prefix.length) { // We matched the full prefix at firstChar, so try it if (matchAt(i)) { return true; } } } return false; } } /** * Matches the current regular expression program against a String. * * @param search String to match against * @return True if string matched */ public boolean match(String search) { return match(search, 0); } /** * Splits a string into an array of strings on regular expression boundaries. * This function works the same way as the Perl function of the same name. * Given a regular expression of "[ab]+" and a string to split of * "xyzzyababbayyzabbbab123", the result would be the array of Strings * "[xyzzy, yyz, 123]". * *

Please note that the first string in the resulting array may be an empty * string. This happens when the very first character of input string is * matched by the pattern. * * @param s String to split on this regular exression * @return Array of strings */ public String[] split(String s) { // Create new vector ArrayList v = new ArrayList(); // Start at position 0 and search the whole string int pos = 0; int len = s.length(); // Try a match at each position while (pos < len && match(s, pos)) { // Get start of match int start = getParenStart(0); // Get end of match int newpos = getParenEnd(0); // Check if no progress was made if (newpos == pos) { v.add(s.substring(pos, start + 1)); newpos++; } else { v.add(s.substring(pos, start)); } // Move to new position pos = newpos; } // Push remainder if it's not empty String remainder = s.substring(pos); if (remainder.length() != 0) { v.add(remainder); } // Return vector as an array of strings String[] ret = new String[v.size()]; v.toArray(ret); return ret; } /** * Flag bit that indicates that subst should replace all occurrences of this * regular expression. */ public static final int REPLACE_ALL = 0x0000; /** * Flag bit that indicates that subst should only replace the first occurrence * of this regular expression. */ public static final int REPLACE_FIRSTONLY = 0x0001; /** * Flag bit that indicates that subst should replace backreferences */ public static final int REPLACE_BACKREFERENCES = 0x0002; /** * Substitutes a string for this regular expression in another string. * This method works like the Perl function of the same name. * Given a regular expression of "a*b", a String to substituteIn of * "aaaabfooaaabgarplyaaabwackyb" and the substitution String "-", the * resulting String returned by subst would be "-foo-garply-wacky-". * * @param substituteIn String to substitute within * @param substitution String to substitute for all matches of this regular expression. * @return The string substituteIn with zero or more occurrences of the current * regular expression replaced with the substitution String (if this regular * expression object doesn't match at any position, the original String is returned * unchanged). */ public String subst(String substituteIn, String substitution) { return subst(substituteIn, substitution, REPLACE_ALL); } /** * Substitutes a string for this regular expression in another string. * This method works like the Perl function of the same name. * Given a regular expression of "a*b", a String to substituteIn of * "aaaabfooaaabgarplyaaabwackyb" and the substitution String "-", the * resulting String returned by subst would be "-foo-garply-wacky-". *

* It is also possible to reference the contents of a parenthesized expression * with $0, $1, ... $9. A regular expression of "http://[\\.\\w\\-\\?/~_@&=%]+", * a String to substituteIn of "visit us: http://www.apache.org!" and the * substitution String "<a href=\"$0\">$0</a>", the resulting String * returned by subst would be * "visit us: <a href=\"http://www.apache.org\">http://www.apache.org</a>!". *

* Note: $0 represents the whole match. * * @param substituteIn String to substitute within * @param substitution String to substitute for matches of this regular expression * @param flags One or more bitwise flags from REPLACE_*. If the REPLACE_FIRSTONLY * flag bit is set, only the first occurrence of this regular expression is replaced. * If the bit is not set (REPLACE_ALL), all occurrences of this pattern will be * replaced. If the flag REPLACE_BACKREFERENCES is set, all backreferences will * be processed. * @return The string substituteIn with zero or more occurrences of the current * regular expression replaced with the substitution String (if this regular * expression object doesn't match at any position, the original String is returned * unchanged). */ public String subst(String substituteIn, String substitution, int flags) { // String to return StringBuffer ret = new StringBuffer(); // Start at position 0 and search the whole string int pos = 0; int len = substituteIn.length(); // Try a match at each position while (pos < len && match(substituteIn, pos)) { // Append string before match ret.append(substituteIn.substring(pos, getParenStart(0))); if ((flags & REPLACE_BACKREFERENCES) != 0) { // Process backreferences int lCurrentPosition = 0; int lLastPosition = -2; int lLength = substitution.length(); while ((lCurrentPosition = substitution.indexOf("$", lCurrentPosition)) >= 0) { if ((lCurrentPosition == 0 || substitution.charAt(lCurrentPosition - 1) != '\\') && lCurrentPosition + 1 < lLength) { char c = substitution.charAt(lCurrentPosition + 1); if (c >= '0' && c <= '9') { // Append everything between the last and the current $ sign ret.append(substitution.substring(lLastPosition + 2, lCurrentPosition)); // Append the parenthesized expression, if present String val = getParen(c - '0'); if (val != null) { ret.append(val); } lLastPosition = lCurrentPosition; } } // Move forward, skipping past match lCurrentPosition++; } // Append everything after the last $ sign ret.append(substitution.substring(lLastPosition + 2, lLength)); } else { // Append substitution without processing backreferences ret.append(substitution); } // Move forward, skipping past match int newpos = getParenEnd(0); // We always want to make progress! if (newpos == pos) { newpos++; } // Try new position pos = newpos; // Break out if we're only supposed to replace one occurrence if ((flags & REPLACE_FIRSTONLY) != 0) { break; } } // If there's remaining input, append it if (pos < len) { ret.append(substituteIn.substring(pos)); } // Return string buffer as string return ret.toString(); } /** * Returns an array of Strings, whose toString representation matches a regular * expression. This method works like the Perl function of the same name. Given * a regular expression of "a*b" and an array of String objects of [foo, aab, zzz, * aaaab], the array of Strings returned by grep would be [aab, aaaab]. * * @param search Array of Objects to search * @return Array of Strings whose toString() value matches this regular expression. */ public String[] grep(Object[] search) { // Create new vector to hold return items ArrayList v = new ArrayList(); // Traverse array of objects for (int i = 0; i < search.length; i++) { // Get next object as a string String s = search[i].toString(); // If it matches this regexp, add it to the list if (match(s)) { v.add(s); } } // Return vector as an array of strings String[] ret = new String[v.size()]; v.toArray(ret); return ret; } /** * @return true if character at i-th position in the search string is a newline */ private boolean isNewline(int i) { char nextChar = search.charAt(i); return nextChar == '\n' || nextChar == '\r' || nextChar == '\u0085' || nextChar == '\u2028' || nextChar == '\u2029'; } /** * Compares two characters. * * @param c1 first character to compare. * @param c2 second character to compare. * @param caseIndependent whether comparision is case insensitive or not. * @return negative, 0, or positive integer as the first character * less than, equal to, or greater then the second. */ private int compareChars(char c1, char c2, boolean caseIndependent) { if (caseIndependent) { c1 = RECharacter.toLowerCase(c1); c2 = RECharacter.toLowerCase(c2); } return ((int) c1 - (int) c2); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy