com.codename1.ui.geom.Geometry Maven / Gradle / Ivy
/*
* Copyright (c) 2012, Codename One and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Codename One designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Codename One through http://www.codenameone.com/ if you
* need additional information or have any questions.
*/
package com.codename1.ui.geom;
import com.codename1.ui.Graphics;
import com.codename1.ui.Stroke;
import com.codename1.ui.Transform;
import com.codename1.ui.geom.GeneralPath.ShapeUtil;
import com.codename1.util.MathUtil;
import java.util.Arrays;
import java.util.List;
/**
* A utility class to assist with geometry elements like bezier curves
* @author Steve Hannah
*/
class Geometry {
/**
* Encapsulates a BezierCurve. Some functionality supports curves of arbitrary degree,
* but the most useful stuff only supports quadratic and cubic curves.
*
* The main point of this class is to provide the ability to segment bezier curves
* into smaller components so that {@link GeneralPath#intersection(com.codename1.ui.geom.Rectangle) }
* will work for paths that contain curves.
*/
static class BezierCurve {
/**
* The x, and y points used for the bezier curves. {@literal (x[0], y[0])} is the starting point
* , {@literal (x[x.length-1], y[y.length-1])} is the end point, and all indices in between
* are the control points. Cubic curves will have 4 points, quadratic curves, 3 points, lines
* 2 points.
*/
final double[] x, y;
private Point2D startPoint, endPoint;
private Rectangle2D boundingRect;
/**
* Creates a bezier curve with the provided points. Points should be entered as {@literal (x1, y1, x2, y2, ..., xn, yn}.
* @param pts The points.
*/
public BezierCurve(double... pts) {
int len = pts.length;
if (len % 2 != 0) {
throw new IllegalArgumentException("Length of points array must be even.");
}
x = new double[len/2];
y = new double[len/2];
for (int i=0; i=0; i--) {
params[index++] = x[i];
params[index++] = y[i];
}
return new BezierCurve(params);
}
/**
* Segements this curve into two shorter curves. Split at point t.
* @param t t value where split should occur. 0 < t < 1
* @param out List where the two segemeted curves will be added.
*/
public void segment(double t, List out) {
out.add(segment(t));
out.add(reverse().segment(1-t).reverse());
}
/**
* Adds bezier curve to a path.
* @param p The path to add to.
* @param join If false, it will first add a moveTo() command to the path.
*/
public void addToPath(GeneralPath p, boolean join) {
if (n() == 2) {
if (!join) p.moveTo(x[0], y[0]);
p.quadTo(x[1], y[1], x[2], y[2]);
} else if (n() == 3) {
if (!join) p.moveTo(x[0], y[0]);
p.curveTo(x[1], y[1], x[2], y[2], x[3], y[3]);
} else if (n() == 1) {
if (join) p.moveTo(x[0], y[0]);
p.lineTo(x[1], y[1]);
}
}
/**
* Strokes the bezier curve on a graphics context.
* @param g
* @param stroke
* @param translateX
* @param translateY
*/
public void stroke(Graphics g, Stroke stroke, int translateX, int translateY) {
if (stroke == null) {
stroke = new Stroke(1, Stroke.CAP_BUTT, Stroke.JOIN_MITER, 1f);
}
GeneralPath p = new GeneralPath();
addToPath(p, false);
p.transform(Transform.makeTranslation(translateX, translateY));
g.drawShape(p, stroke);
}
public static void extractBezierCurvesFromPath(Shape shape, List out) {
PathIterator it = shape.getPathIterator();
int type;
double[] buf = new double[6];
double prevX = 0;
double prevY = 0;
double markX = 0;
double markY = 0;
while (!it.isDone()) {
type = it.currentSegment(buf);
switch (type) {
case PathIterator.SEG_MOVETO:
prevX = buf[0];
prevY = buf[1];
markX = prevX;
markY = prevY;
break;
case PathIterator.SEG_LINETO:
prevX = buf[0];
prevY = buf[1];
break;
case PathIterator.SEG_CLOSE:
prevX = markX;
prevY = markY;
break;
case PathIterator.SEG_QUADTO:
out.add(new BezierCurve(prevX, prevY, buf[0], buf[1], buf[2], buf[3]));
prevX = buf[2];
prevY = buf[3];
break;
case PathIterator.SEG_CUBICTO:
out.add(new BezierCurve(prevX, prevY, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]));
prevX = buf[4];
prevY = buf[5];
break;
}
it.next();
}
}
public Rectangle2D getBoundingRect() {
if (boundingRect == null) {
Point2D start = getStartPoint();
Point2D end = getEndPoint();
int numSolutions = 0;
double[] res = new double[3];
double x1 = Math.min(start.getX(), end.getX());
double y1 = Math.min(start.getY(), end.getY());
double x2 = Math.max(start.getX(), end.getX());
double y2 = Math.max(start.getY(), end.getY());
switch (n()) {
case 1:
break;
case 0:
break;
case 2:
case 3:
numSolutions = ShapeUtil.solveQuad(getDerivativeCoefficientsX(), res);
if (numSolutions > 0) {
for (int i=0; i 1) {
continue;
}
double xt = x(t);
double yt = y(t);
x1 = Math.min(x1, xt);
y1 = Math.min(y1, yt);
x2 = Math.max(x2, xt);
y2 = Math.max(y2, yt);
}
}
numSolutions = ShapeUtil.solveQuad(getDerivativeCoefficientsY(), res);
if (numSolutions > 0) {
for (int i=0; i 1) {
continue;
}
double xt = x(t);
double yt = y(t);
x1 = Math.min(x1, xt);
y1 = Math.min(y1, yt);
x2 = Math.max(x2, xt);
y2 = Math.max(y2, yt);
}
}
break;
default:
throw new IllegalArgumentException("getBoundingRect() only supported for bezier curves of order 3 or less");
}
boundingRect = new Rectangle2D(x1, y1, x2-x1, y2-y1);
}
return boundingRect;
}
/**
* Segments the curve into 2 smaller component curves split at the given t value. t in [0 .. 1].
* Returns only the first segment. You can use reverse().segment(1-t).reverse() to get the other segment.
* @param t The value of t to segment on.
* @return The first segment.
*/
public BezierCurve segment(double t) {
return segment(0, t);
}
/**
* Finds all of the t values that cross the given x vertical between y=minY and y=maxY. The
* t values are added to the {@literal out} array, and the number of matches is returned.
* On quadratic curves, there should be a maximum of 2 results. On cubic curves, there will be
* a maximum 3 results.
* @param x The x value for which we wish to find t.
* @param minY Minimum y value we are interested in.
* @param maxY Maximum y value we are interested in.
* @param out Out array. For quadratics, this needs to have length at least 2. For cubics, at least 3.
* @return The number of results found.
*/
public int findTValuesForX(double x, double minY, double maxY, double[] out) {
int numMatches = findTValuesForX(x, out);
int numFiltered = 0;
for (int i=0; i 1) {
continue;
}
double ty = y(out[i]);
if (ty >= minY && ty <= maxY) {
out[numFiltered] = out[i];
numFiltered++;
}
}
return numFiltered;
}
/**
* Finds all of the t values that cross the given y horizontal between x=minX and x=maxX. The
* t values are added to the {@literal out} array, and the number of matches is returned.
* On quadratic curves, there should be a maximum of 2 results. On cubic curves, there will be
* a maximum 3 results.
* @param y The x value for which we wish to find t.
* @param minX Minimum x value we are interested in.
* @param maxX Maximum x value we are interested in.
* @param out Out array. For quadratics, this needs to have length at least 2. For cubics, at least 3.
* @return The number of results found.
*/
public int findTValuesForY(double y, double minX, double maxX, double[] out) {
int numMatches = findTValuesForY(y, out);
int numFiltered = 0;
for (int i=0; i 1) {
continue;
}
double tx = x(out[i]);
if (tx >= minX && tx <= maxX) {
out[numFiltered] = out[i];
numFiltered++;
}
}
return numFiltered;
}
/**
* Compares two bezier curves to see if they are equal (within epsilon margin of error).
* @param c The bezier curve to compare to
* @param epsilon Curves are equal if all x and y values are within epsilon of the corresponding x/y value
* in the other curve. epsilon must be greater than 0
* @return True if curves are equal within epsilon margin of error.
*/
public boolean equals(BezierCurve c, double epsilon) {
if (c.n() != n()) return false;
int len = x.length;
for (int i=0; i epsilon) {
return false;
}
if (Math.abs(y[i]-c.y[i]) > epsilon) {
return false;
}
}
return true;
}
/**
* Segments the bezier curve on all intersection points of the provided rectangle.
* @param rect The rectangle on which to segment the curve.
* @param out list where the segmented curves are appended.
*/
public void segment(Rectangle2D rect, List out) {
//System.out.println("segment("+rect+") on "+this);
int numIntersections = (n() == 2) ? ShapeUtil.intersectQuad(x[0], y[0], x[1], y[1], x[2], y[2], rect.getX(), rect.getY(), rect.getX()+rect.getWidth(), rect.getY() + rect.getHeight()) :
n() == 3 ? ShapeUtil.intersectCubic(x[0], y[0], x[1], y[1], x[2], y[2], x[3], y[3], rect.getX(), rect.getY(), rect.getX() + rect.getWidth(), rect.getHeight() + rect.getY()) :
n() == 1 ? ShapeUtil.intersectLine(x[0], y[0], x[1], y[1], rect.getX(), rect.getY(), rect.getX()+rect.getWidth(), rect.getY()+rect.getHeight()) :
-1;
if (numIntersections == -1) {
throw new IllegalArgumentException("Cannot segment bezier curve of this order: "+n());
}
if (numIntersections == 0) {
out.add(new BezierCurve(this));
return;
}
// To store t values of intersection points
double[] tvals = new double[numIntersections];
int nextTvalIndex = 0;
double[] res = new double[3];
int numMatches = 0;
double epsilon = 0.01;
// left edge
if ((numMatches = findTValuesForX(rect.getX(), rect.getY(), rect.getY() + rect.getHeight(), res)) > 0) {
//System.out.println("left: "+numMatches);
nextTvalIndex += arraycopy(res, 0, tvals, nextTvalIndex, numMatches, epsilon);
}
// right edge
if ((numMatches = findTValuesForX(rect.getX()+rect.getWidth(), rect.getY(), rect.getY() + rect.getHeight(), res)) > 0) {
//System.out.println("right: "+numMatches);
nextTvalIndex += arraycopy(res, 0, tvals, nextTvalIndex, numMatches, epsilon);
}
// top edge
if ((numMatches = findTValuesForY(rect.getY(), rect.getX(), rect.getX() + rect.getWidth(), res)) > 0) {
//System.out.println("Top: "+numMatches);
nextTvalIndex += arraycopy(res, 0, tvals, nextTvalIndex, numMatches, epsilon);
}
// bottom edge
if ((numMatches = findTValuesForY(rect.getY() + rect.getHeight(), rect.getX(), rect.getX() + rect.getWidth(), res)) > 0) {
//System.out.println("Bottom: "+numMatches+" "+Arrays.toString(res));
nextTvalIndex += arraycopy(res, 0, tvals, nextTvalIndex, numMatches, epsilon);
}
Arrays.sort(tvals, 0, nextTvalIndex);
//System.out.println("tvals="+Arrays.toString(tvals)+"; numSegments="+(nextTvalIndex+1));
int numSegments = nextTvalIndex+1;
switch (numSegments) {
case 1:
out.add(new BezierCurve(this));
return;
case 2:
if (tvals[0] > epsilon && tvals[0] < 1-epsilon) {
segment(tvals[0], out);
} else {
out.add(new BezierCurve(this));
}
return;
default:
int tIndex = 0;
while (tvals[tIndex] < epsilon || tvals[tIndex] > 1-epsilon) {
tIndex++;
if (tIndex >= nextTvalIndex) {
out.add(new BezierCurve(this));
return;
}
}
segment(tvals[tIndex], out);
BezierCurve last = out.remove(out.size()-1);
if (last.equals(this, epsilon)) {
out.add(last);
} else {
last.segment(rect, out);
}
return;
}
}
/**
* Checks an array to see if it already contains a value within the desired epsilon range.
* @param needle The value to search for
* @param haystack The array to check
* @param epsilon The range considered to be a match.
* @param startIndex Start index to check
* @param endIndex End index to check
* @return
*/
private static boolean contains(double needle, double[] haystack, double epsilon, int startIndex, int endIndex) {
for (int i=startIndex; i= 1) {
throw new IllegalArgumentException("t must be between 0 and 1 but found "+t1);
}
if (n() == 2) {
double x0 = x(t0);
double y0 = y(t0);
double xt = x(t1);
double yt = y(t1);
double x3 = (x[1] - x[0]) * t1 + x[0];
double y3 = (y[1] - y[0]) * t1 + y[0];
BezierCurve b1 = new BezierCurve(x0, y0,
x3, y3,
xt, yt
);
return b1;
} else if (n() == 3) {
if (t0 != 0) {
throw new IllegalArgumentException("Only supports t0=0 right now with cubics");
}
double t = t1;
double x1 = x[0];
double y1 = y[0];
double x2 = x[1];
double y2 = y[1];
double x3 = x[2];
double y3 = y[2];
double x4 = x[3];
double y4 = y[3];
double x12 = (x2-x1)*t+x1;
double y12 = (y2-y1)*t+y1;
double x23 = (x3-x2)*t+x2;
double y23 = (y3-y2)*t+y2;
double x34 = (x4-x3)*t+x3;
double y34 = (y4-y3)*t+y3;
double x123 = (x23-x12)*t+x12;
double y123 = (y23-y12)*t+y12;
double x234 = (x34-x23)*t+x23;
double y234 = (y34-y23)*t+y23;
double x1234 = (x234-x123)*t+x123;
double y1234 = (y234-y123)*t+y123;
return new BezierCurve(x1, y1, x12, y12, x123, y123, x1234, y1234);
}
throw new IllegalArgumentException("Cannot segment bezier curves with order "+n());
}
}
private static int factorial(int n) {
if (n < 0) {
throw new IllegalArgumentException("factorial does not support negative numbers");
}
if (n == 0) return 1;
return n * factorial(n-1);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy