com.composum.ai.backend.slingbase.impl.RAGServiceImpl Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of composum-ai-integration-backend-slingbase Show documentation
Show all versions of composum-ai-integration-backend-slingbase Show documentation
Common Functionality for Composum AI specific to Sling but would be useable in both Composum and AEM and similar.
The newest version!
package com.composum.ai.backend.slingbase.impl;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.TreeMap;
import java.util.concurrent.atomic.AtomicLong;
import java.util.stream.Collectors;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import javax.jcr.RepositoryException;
import javax.jcr.Session;
import javax.jcr.query.Query;
import javax.jcr.query.QueryManager;
import javax.jcr.query.QueryResult;
import javax.jcr.query.Row;
import javax.jcr.query.RowIterator;
import org.apache.sling.api.SlingHttpServletRequest;
import org.apache.sling.api.SlingHttpServletResponse;
import org.apache.sling.api.resource.Resource;
import org.apache.sling.api.resource.ResourceResolver;
import org.jetbrains.annotations.NotNull;
import org.osgi.service.component.annotations.Component;
import org.osgi.service.component.annotations.Reference;
import org.osgi.service.component.annotations.ReferenceCardinality;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.composum.ai.backend.base.service.GPTException;
import com.composum.ai.backend.base.service.chat.GPTChatCompletionService;
import com.composum.ai.backend.base.service.chat.GPTChatRequest;
import com.composum.ai.backend.base.service.chat.GPTConfiguration;
import com.composum.ai.backend.base.service.chat.GPTEmbeddingService;
import com.composum.ai.backend.base.service.chat.GPTMessageRole;
import com.composum.ai.backend.slingbase.AIConfigurationService;
import com.composum.ai.backend.slingbase.ApproximateMarkdownService;
import com.composum.ai.backend.slingbase.PageCachedValueService;
import com.composum.ai.backend.slingbase.RAGService;
/**
* Basic services for retrieval augmented generation (RAG).
*/
@Component(service = RAGService.class)
public class RAGServiceImpl implements RAGService {
private static final Logger LOG = LoggerFactory.getLogger(RAGServiceImpl.class);
@Reference
protected ApproximateMarkdownService markdownService;
@Reference
protected GPTEmbeddingService embeddingService;
@Reference
protected AIConfigurationService aiConfigurationService;
@Reference
protected GPTChatCompletionService chatCompletionService;
@Reference(cardinality = ReferenceCardinality.OPTIONAL)
protected PageCachedValueService pageCachedValueService;
protected final AtomicLong requestCounter = new AtomicLong(System.currentTimeMillis() / 2);
@Override
@Nonnull
public List searchRelated(@Nullable Resource root, @Nullable String querytext, int limit) {
if (root == null || querytext == null || limit <= 0) {
return Collections.emptyList();
}
int restOfLimit = limit * 5 / 4 + 3; // a little larger since there might be exact and inexact matches
String exactQuery = "\"" + querytext.replaceAll("\"", "") + "\"";
String normalizedQuery = normalize(querytext);
@NotNull List exactResult = Collections.emptyList();
try {
exactResult = containsQuery(root, exactQuery, restOfLimit);
} catch (RepositoryException e) {
LOG.error("Error searching for exact query {}", exactQuery, e);
}
restOfLimit -= exactResult.size();
LOG.trace("Exact query result: {}", exactResult);
@NotNull List normalizedResult = Collections.emptyList();
try {
normalizedResult = containsQuery(root, normalizedQuery, restOfLimit);
} catch (RepositoryException e) {
LOG.error("Error searching for normalized query {}", normalizedQuery, e);
}
LOG.trace("Normalized query result: {}", normalizedResult);
List result = new ArrayList<>(exactResult);
result.addAll(normalizedResult);
result = result.stream().distinct().limit(limit).collect(Collectors.toList());
return result;
}
protected @NotNull List containsQuery(@NotNull Resource root, @NotNull String querytext, int restOfLimit) throws RepositoryException {
List result = new ArrayList<>();
ResourceResolver resolver = root.getResourceResolver();
final Session session = Objects.requireNonNull(resolver.adaptTo(Session.class));
final QueryManager queryManager = session.getWorkspace().getQueryManager();
String statement = "SELECT [jcr:path], [jcr:score] FROM [nt:base] AS content WHERE " +
"ISDESCENDANTNODE(content, '" + root.getPath() + "') " +
"AND NAME(content) = 'jcr:content' " +
"AND CONTAINS(content.*, $queryText) " +
"ORDER BY [jcr:score] DESC";
// equivalent Composum Nodes query template for testing
// SELECT [jcr:path], [jcr:score] FROM [nt:base] AS content WHERE ISDESCENDANTNODE(content, '${root_path.path}') AND NAME(content) = 'jcr:content' AND CONTAINS(content.*, '${text.3}') ORDER BY [jcr:score] DESC
Query query = queryManager.createQuery(statement, Query.JCR_SQL2);
query.bindValue("queryText", session.getValueFactory().createValue(querytext));
query.setLimit(restOfLimit);
LOG.trace("Executing query:\n{}\nwith\n{}", query.getStatement(), querytext);
QueryResult queryResult = query.execute();
for (RowIterator rowIterator = queryResult.getRows(); rowIterator.hasNext(); ) {
if (restOfLimit-- <= 0) {
return result;
}
Row row = rowIterator.nextRow();
String path = row.getValue("jcr:path").getString();
LOG.trace("Found path {} with score {}", path, row.getValue("jcr:score").getDouble());
if (!result.contains(path)) {
result.add(path);
}
}
return result;
}
/**
* Turn it into a query for the words mentioned in there - that is, remove all meta characters for CONTAINS queries:
* AND, OR, words prefixed with -, quotes, backslashes. We use an OR query to find pages with as many words as possible.
*/
@Nonnull
protected String normalize(@Nonnull String querytext) {
return Arrays.stream(querytext.split("\\s+"))
.map(s -> s.replaceAll("[\"\\\\']", ""))
.map(s -> s.replaceAll("^-+", ""))
.filter(s -> !s.equals("OR"))
.filter(s -> !s.equals("AND"))
.collect(Collectors.joining(" OR "));
}
/**
* Finds the resources whose markdown approximation has embeddings that are the most similar to the querytext embedding.
* Useable e.g. as filter after {@link #searchRelated(Resource, String, int)}.
*/
@Override
@Nonnull
public List orderByEmbedding(@Nullable String querytext, @Nonnull List resources,
@NotNull SlingHttpServletRequest request, @NotNull SlingHttpServletResponse response,
@NotNull Resource rootResource) {
Map textToPath = new TreeMap<>();
Map textToResource = new TreeMap<>();
for (Resource resource : resources) {
String markdown = markdownService.approximateMarkdown(resource, request, response);
textToPath.put(markdown, resource.getPath());
textToResource.put(markdown, resource);
}
GPTConfiguration config = aiConfigurationService.getGPTConfiguration(rootResource.getResourceResolver(), rootResource.getPath());
List relatedTexts = embeddingService.findMostRelated(querytext, new ArrayList<>(textToPath.keySet()),
Integer.MAX_VALUE, config, getEmbeddingsCache(textToResource));
Map pathToResource = resources.stream().collect(Collectors.toMap(r -> r.getPath(), r -> r));
List result = relatedTexts.stream()
.map(textToPath::get)
.map(pathToResource::get)
.collect(Collectors.toList());
return result;
}
/**
* Answer a question with RAG from the given resources, e.g. found with {@link #searchRelated(Resource, String, int)}.
*
* @param querytext the query text
* @param resources the list of resources to answer from
* @param request the request to use when determining the markdown approximation - not modified
* @param response the response to use when determining the markdown approximation - not modified
* @param rootResource the root resource to find GPT configuration from
* @param limitRagTexts the maximum number of RAG texts to consider
* @return the answer text
*/
@Override
public String ragAnswer(@Nullable String querytext, @Nonnull List resources,
@Nonnull SlingHttpServletRequest request, @Nonnull SlingHttpServletResponse response,
@NotNull Resource rootResource, int limitRagTexts) {
long id = requestCounter.incrementAndGet();
Map textToPath = new TreeMap<>();
Map textToResource = new TreeMap<>();
for (Resource resource : resources) {
String markdown = markdownService.approximateMarkdown(resource, request, response);
textToPath.put(markdown, resource.getPath());
textToResource.put(markdown, resource);
}
GPTConfiguration config = aiConfigurationService.getGPTConfiguration(rootResource.getResourceResolver(), rootResource.getPath());
List bestMatches = embeddingService.findMostRelated(querytext,
new ArrayList<>(textToPath.keySet()), limitRagTexts, config, getEmbeddingsCache(textToResource));
LOG.debug("ragAnswer: query for {} is {}", id, request);
GPTChatRequest chatRequest = new GPTChatRequest(config);
Collections.reverse(bestMatches); // make the most relevant last, near the actual question
int limit = bestMatches.size();
while (limit >= 1) {
try {
for (String text : bestMatches.subList(0, limit)) {
String textPath = textToPath.get(text);
chatRequest.addMessage(GPTMessageRole.USER, "For answering my question later, retrieve the text of the possibly relevant page: "
+ textPath.replaceAll("/jcr:content", ".html"));
chatRequest.addMessage(GPTMessageRole.ASSISTANT, text);
LOG.debug("ragAnswer: Using for {} path {}", id, textPath);
}
chatRequest.addMessage(GPTMessageRole.USER, "Considering this information, please answer the following as Markdown text without enumeration, including links to the relevant retrieved pages above:\n\n" + querytext);
LOG.debug("ragAnswer: request {} : {}", id, request);
String answer = chatCompletionService.getSingleChatCompletion(chatRequest);
LOG.debug("ragAnswer: response {} : {}", id, answer);
return answer;
} catch (GPTException.GPTContextLengthExceededException e) {
// retry with lower number of texts
limit = limit * 2 / 3;
LOG.info("ragAnswer: retrying with lower number of texts because of content length exceeded exception: {}", limit);
}
}
if (limit == 0 && !bestMatches.isEmpty()) {
return "(No answer: context length exceeded.)";
}
return "(No answer found).";
}
protected GPTEmbeddingService.EmbeddingsCache getEmbeddingsCache(final Map textToResource) {
if (pageCachedValueService == null) {
return null;
}
final String key = "pagemarkdown-embedding-" + chatCompletionService.getEmbeddingsModel();
return new GPTEmbeddingService.EmbeddingsCache() {
@Override
public String getCachedEmbedding(String text) {
Resource resource = textToResource.get(text);
return resource != null ? pageCachedValueService.getPageCachedValue(key, resource) : null;
}
@Override
public void putCachedEmbedding(String text, String embedding) {
Resource resource = textToResource.get(text);
if (resource != null) {
pageCachedValueService.putPageCachedValue(key, resource, embedding);
}
}
};
}
/**
* Processes a query to have the AI suggest a couple of search keywords for use with the other methods that might find the most relevant results.
*
* @param querytext the query text for which we find keywords
* @param rootResource the root resource to find GPT configuration from
* @return a list of keywords
* @throws RepositoryException
*/
@Override
@Nonnull
public List collectSearchKeywords(@Nullable String querytext, @Nonnull Resource rootResource) throws RepositoryException {
GPTConfiguration config = aiConfigurationService.getGPTConfiguration(rootResource.getResourceResolver(), rootResource.getPath());
GPTChatRequest request = new GPTChatRequest(config)
.addMessage(GPTMessageRole.SYSTEM, "Print up to 7 keywords to search for in documents with a BM25 algorithm which are likely to appear in documents answering the users question, but not in documents irrelevant to that.\n" +
"The keywords should be selected to maximize the relevance of the retrieved high scoring documents, specifically aiming to answer the user's question.\n" +
"The keywords can be words from the users question, synonyms or other words you would expect to be present especially in a document answering the question.\n" +
"Print the keywords (single words) as comma separated list.")
.addMessage(GPTMessageRole.USER, querytext);
String result = chatCompletionService.getSingleChatCompletion(request);
LOG.debug("collectSearchKeywords: for '{}' got '{}'", querytext, result);
if (result == null) {
return Collections.emptyList();
}
return Arrays.asList(result.trim().split("\\s*,\\s*"));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy