com.couchbase.spark.internal.DataFrameCreation.scala Maven / Gradle / Ivy
/*
* Copyright (c) 2015 Couchbase, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Putting this in this Spark package to be able to access internalCreateDataFrame
// See my (currently unanswered) SO post for context:
// https://stackoverflow.com/questions/56183811/how-to-create-a-custom-structured-streaming-source-for-apache-spark-2-3-0
package org.apache.spark.sql
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.types.StructType
/** Helpers to create streaming DataFrames.
*/
object DataFrameCreation {
def createStreamingDataFrame(sqlContext: SQLContext,
rdd: RDD[Row],
schema: StructType): DataFrame = {
// internalCreateDataFrame requires an RDD[InternalRow]
val encoder = RowEncoder.apply(schema)
val encoded: RDD[InternalRow] = rdd.map(row => {
encoder.toRow(row)
})
sqlContext.internalCreateDataFrame(encoded, schema, isStreaming = true)
}
def createStreamingDataFrame(sqlContext: SQLContext,
df: DataFrame,
schema: StructType): DataFrame = {
// internalCreateDataFrame requires an RDD[InternalRow]
val encoder = RowEncoder.apply(schema)
val encoded: RDD[InternalRow] = df.rdd.map(row => {
encoder.toRow(row)
})
sqlContext.internalCreateDataFrame(encoded, schema, isStreaming = true)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy