All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.crealytics.spark.excel.InferSchema.scala Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2022 Martin Mauch (@nightscape)
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.crealytics.spark.excel

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types._

private[excel] object InferSchema {
  type CellType = Int

  /** Similar to the JSON schema inference. [[org.apache.spark.sql.execution.datasources.json.InferSchema]]
    *   1. Infer type of each row 2. Merge row types to find common type 3. Replace any null types with string type
    */
  def apply(rowsRDD: RDD[Seq[DataType]]): Array[DataType] = {
    val startType: Array[DataType] = Array.empty
    val rootTypes: Array[DataType] = rowsRDD.aggregate(startType)(inferRowType, mergeRowTypes)

    rootTypes.map {
      case _: NullType => StringType
      case other => other
    }
  }

  private def inferRowType(rowSoFar: Array[DataType], next: Seq[DataType]): Array[DataType] = {
    val maxLength = math.max(rowSoFar.length, next.size)
    val defaultDataType: Int => DataType = (_ => NullType)
    val filledRowSoFar = Array.tabulate(maxLength)(n => rowSoFar.applyOrElse[Int, DataType](n, defaultDataType))
    val filledNext = Array.tabulate(maxLength)(n => next.applyOrElse[Int, DataType](n, defaultDataType))
    filledRowSoFar.zip(filledNext).map { case (r, n) => inferField(r, n) }
  }

  private[excel] def mergeRowTypes(first: Array[DataType], second: Array[DataType]): Array[DataType] = {
    first.zipAll(second, NullType, NullType).map { case ((a, b)) =>
      findTightestCommonType(a, b).getOrElse(NullType)
    }
  }

  /** Infer type of string field. Given known type Double, and a string "1", there is no point checking if it is an Int,
    * as the final type must be Double or higher.
    */
  private[excel] def inferField(typeSoFar: DataType, field: DataType): DataType = {
    // Defining a function to return the StringType constant is necessary in order to work around
    // a Scala compiler issue which leads to runtime incompatibilities with certain Spark versions;
    // see issue #128 for more details.
    def stringType(): DataType = {
      StringType
    }

    if (field == NullType) {
      typeSoFar
    } else {
      (typeSoFar, field) match {
        case (NullType, ct) => ct
        case (DoubleType, DoubleType) => DoubleType
        case (BooleanType, BooleanType) => BooleanType
        case (TimestampType, TimestampType) => TimestampType
        case (StringType, _) => stringType()
        case (_, _) => stringType()
      }
    }
  }

  /** Copied from internal Spark api [[org.apache.spark.sql.catalyst.analysis.HiveTypeCoercion]]
    */
  private val numericPrecedence: IndexedSeq[DataType] =
    IndexedSeq[DataType](ByteType, ShortType, IntegerType, LongType, FloatType, DoubleType, TimestampType)

  /** Copied from internal Spark api [[org.apache.spark.sql.catalyst.analysis.HiveTypeCoercion]]
    */
  val findTightestCommonType: (DataType, DataType) => Option[DataType] = {
    case (t1, t2) if t1 == t2 => Some(t1)
    case (NullType, t1) => Some(t1)
    case (t1, NullType) => Some(t1)
    case (StringType, _) => Some(StringType)
    case (_, StringType) => Some(StringType)

    // Promote numeric types to the highest of the two and all numeric types to unlimited decimal
    case (t1, t2) if Seq(t1, t2).forall(numericPrecedence.contains) =>
      val index = numericPrecedence.lastIndexWhere(t => t == t1 || t == t2)
      Some(numericPrecedence(index))

    case _ => None
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy