All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.crealytics.spark.v2.excel.ExcelParser.scala Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2022 Martin Mauch (@nightscape)
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.crealytics.spark.v2.excel

import org.apache.poi.ss.usermodel.Cell
import org.apache.poi.ss.usermodel.CellType
import org.apache.spark.internal.Logging
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.GenericInternalRow
import org.apache.spark.sql.catalyst.util._
import org.apache.spark.sql.sources.Filter
import org.apache.spark.sql.types._
import org.apache.spark.unsafe.types.UTF8String

import scala.util.control.NonFatal
import org.apache.poi.ss.usermodel.DateUtil

/** Constructs a parser for a given schema that translates Excel data to an
  * [[org.apache.spark.sql.catalyst.InternalRow]].
  *
  * @param dataSchema
  *   The Excel data schema that is specified by the user, or inferred from underlying data files.
  * @param requiredSchema
  *   The schema of the data that should be output for each row. This should be a subset of the columns in dataSchema.
  * @param options
  *   Configuration options for a Excel parser.
  * @param filters
  *   The pushdown filters that should be applied to converted values.
  */
class ExcelParser(dataSchema: StructType, requiredSchema: StructType, val options: ExcelOptions, filters: Seq[Filter])
    extends Logging {
  require(
    requiredSchema.toSet.subsetOf(dataSchema.toSet),
    s"requiredSchema (${requiredSchema.catalogString}) should be the subset of " +
      s"dataSchema (${dataSchema.catalogString})."
  )

  def this(dataSchema: StructType, requiredSchema: StructType, options: ExcelOptions) = {
    this(dataSchema, requiredSchema, options, Seq.empty)
  }
  def this(schema: StructType, options: ExcelOptions) = this(schema, schema, options)

  /** Handling detail about Excel, so the logic of ExcelParser is similar with other file based data sources
    */
  private val excelHelper = ExcelHelper(options)

  /** A `ValueConverter` is responsible for converting the given value to a desired type.
    */
  private type ValueConverter = Cell => Any

  /* Implement column pruning right inside this class */
  private val parsedSchema =
    if (options.columnNameOfRowNumber.isDefined) {
      dataSchema
        .filter(_.name != options.columnNameOfRowNumber.get)
    } else dataSchema

  /* This index is used to reorder parsed tokens */
  private val tokenIndexArr = requiredSchema
    .map(f => java.lang.Integer.valueOf(parsedSchema.indexOf(f)))
    .toArray

  /* Excel row number index (if configured) */
  private val rowNumberPosition =
    if (options.columnNameOfRowNumber.isDefined) {
      Some(requiredSchema.fieldIndex(options.columnNameOfRowNumber.get))
    } else None

  /* Pre-allocated Some to avoid the overhead of building Some per each-row. */
  private val requiredRow = Some(new GenericInternalRow(requiredSchema.length))

  /** Pre-allocated empty sequence returned when the parsed row cannot pass filters. Pre-allocate it to avoid
    * unnecessary allocations.
    */
  private val noRows = None

  private lazy val timestampFormatter = ExcelDateTimeStringUtils.getTimestampFormatter(options)
  private lazy val dateFormatter = ExcelDateTimeStringUtils.getDateFormatter(options)

  /* Excel record is flat, it can use same filters with CSV */
  private val pushedFilters = new ExcelFilters(filters, requiredSchema)

  /* Retrieve the raw record string. */
  private def getCurrentInput: UTF8String = UTF8String
    .fromString("TODO: how to show the corrupted record?")

  /** This parser first picks some tokens from the input tokens, according to the required schema, then parse these
    * tokens and put the values in a row, with the order specified by the required schema.
    *
    * For example, let's say there is Excel data as below: a,b,c 1,2,A
    *
    * So the Excel data schema is: ["a", "b", "c"] And let's say the required schema is: ["c", "b"]
    *
    * with the input tokens, input tokens - [1, 2, "A"]
    *
    * Each input token is placed in each output row's position by mapping these. In this case,
    *
    * output row - ["A", 2]
    */
  private val valueConverters: Array[ValueConverter] = {
    requiredSchema.map(f => makeConverter(f.name, f.dataType, f.nullable)).toArray
  }

  /* Special handling the default locale for backward compatibility */
  private val decimalParser = (s: String) => new java.math.BigDecimal(s)

  /** Create a converter which converts the Cell value to a value according to a desired type. Currently, we do not
    * support complex types (`ArrayType`, `MapType`, `StructType`).
    *
    * For other nullable types, returns null if it is null or equals to the value specified in `nullValue` option.
    */
  private def makeConverter(name: String, dataType: DataType, nullable: Boolean): ValueConverter =
    dataType match {
      case _: ByteType =>
        (d: Cell) =>
          nullSafeDatum(d, name, nullable, options)(d.getCellType match {
            case CellType.NUMERIC => _.getNumericCellValue.toByte
            case CellType.FORMULA =>
              _.getCachedFormulaResultType match {
                case CellType.BLANK | CellType._NONE | CellType.ERROR => null
                case CellType.NUMERIC => d.getNumericCellValue.toByte
                case _ => d.getStringCellValue.toByte
              }
            case _ => _.getStringCellValue.toByte
          })

      case _: ShortType =>
        (d: Cell) =>
          nullSafeDatum(d, name, nullable, options)(d.getCellType match {
            case CellType.NUMERIC => _.getNumericCellValue.toShort
            case CellType.FORMULA =>
              _.getCachedFormulaResultType match {
                case CellType.BLANK | CellType._NONE | CellType.ERROR => null
                case CellType.NUMERIC => d.getNumericCellValue.toShort
                case _ => d.getStringCellValue.toShort
              }
            case _ => _.getStringCellValue.toShort
          })

      case _: IntegerType =>
        (d: Cell) =>
          nullSafeDatum(d, name, nullable, options)(d.getCellType match {
            case CellType.NUMERIC => _.getNumericCellValue.toInt
            case CellType.FORMULA =>
              _.getCachedFormulaResultType match {
                case CellType.BLANK | CellType._NONE | CellType.ERROR => null
                case CellType.NUMERIC => d.getNumericCellValue.toInt
                case _ => d.getStringCellValue.toInt
              }
            case _ => _.getStringCellValue.toInt
          })

      case _: LongType =>
        (d: Cell) =>
          nullSafeDatum(d, name, nullable, options)(d.getCellType match {
            case CellType.NUMERIC => _.getNumericCellValue.toLong
            case CellType.FORMULA =>
              _.getCachedFormulaResultType match {
                case CellType.BLANK | CellType._NONE | CellType.ERROR => null
                case CellType.NUMERIC => d.getNumericCellValue.toLong
                case _ => d.getStringCellValue.toLong
              }
            case _ => _.getStringCellValue.toLong
          })

      case _: FloatType =>
        (d: Cell) =>
          nullSafeDatum(d, name, nullable, options)(d.getCellType match {
            case CellType.NUMERIC => _.getNumericCellValue.toFloat
            case CellType.FORMULA =>
              _.getCachedFormulaResultType match {
                case CellType.BLANK | CellType._NONE | CellType.ERROR => null
                case CellType.NUMERIC => d.getNumericCellValue.toFloat
                case _ => d.getStringCellValue.toFloat
              }
            case _ =>
              _.getStringCellValue match {
                case options.nanValue => Float.NaN
                case options.negativeInf => Float.NegativeInfinity
                case options.positiveInf => Float.PositiveInfinity
                case datum => datum.toFloat
              }
          })

      case _: DoubleType =>
        (d: Cell) =>
          nullSafeDatum(d, name, nullable, options)(d.getCellType match {
            case CellType.NUMERIC => _.getNumericCellValue
            case CellType.FORMULA =>
              _.getCachedFormulaResultType match {
                case CellType.BLANK | CellType._NONE => null

                /* Cell is an error-formula, and requested type is double */
                case CellType.ERROR => Double.NaN
                case CellType.NUMERIC => d.getNumericCellValue
                case _ =>
                  excelHelper.safeCellStringValue(d) match {
                    case options.nanValue => Double.NaN
                    case options.negativeInf => Double.NegativeInfinity
                    case options.positiveInf => Double.PositiveInfinity
                    case s => s.toDouble
                  }
              }
            case _ =>
              excelHelper.safeCellStringValue(_) match {
                case options.nanValue => Double.NaN
                case options.negativeInf => Double.NegativeInfinity
                case options.positiveInf => Double.PositiveInfinity
                case s => s.toDouble
              }
          })

      case _: BooleanType =>
        (d: Cell) =>
          nullSafeDatum(d, name, nullable, options)(d.getCellType match {
            case CellType.BOOLEAN => _.getBooleanCellValue
            case CellType.FORMULA =>
              _.getCachedFormulaResultType match {
                case CellType.BLANK | CellType._NONE | CellType.ERROR => null
                case CellType.BOOLEAN => d.getBooleanCellValue
                case _ => d.getStringCellValue.toBoolean
              }
            case _ => _.getStringCellValue.toBoolean
          })

      case dt: DecimalType =>
        (d: Cell) =>
          nullSafeDatum(d, name, nullable, options) { datum =>
            datum.getCellType match {
              case CellType.NUMERIC | CellType.FORMULA => {
                Decimal(datum.getNumericCellValue(), dt.precision, dt.scale)
              }
              case _ => {
                Decimal(decimalParser(datum.getStringCellValue), dt.precision, dt.scale)
              }
            }
          }

      case _: TimestampType =>
        (d: Cell) =>
          nullSafeDatum(d, name, nullable, options) { datum =>
            if (DateUtil.isCellDateFormatted(datum)) {
              /* Excel to spark precision */
              datum.getDateCellValue.getTime * 1000
            } else {
              datum.getCellType match {
                case CellType.NUMERIC | CellType.FORMULA => {
                  /* Excel to spark precision */
                  datum.getNumericCellValue.toLong
                }
                case _ => {
                  val v = excelHelper.safeCellStringValue(datum)
                  try { timestampFormatter.parse(v) }
                  catch {
                    case NonFatal(e) =>
                      /* If fails to parse, then tries the way used in 2.0 and 1.x for backwards compatibility.
                       */
                      ExcelDateTimeStringUtils
                        .stringToTimestamp(v, options.zoneId)
                        .getOrElse(throw e)
                  }
                }
              }

            }
          }

      case _: DateType =>
        (d: Cell) =>
          nullSafeDatum(d, name, nullable, options) { datum =>
            if (DateUtil.isCellDateFormatted(datum)) {
              DateTimeUtils.fromJavaDate(new java.sql.Date(datum.getDateCellValue().getTime))
            } else {
              datum.getCellType match {
                case CellType.NUMERIC | CellType.FORMULA => {
                  /* Excel to spark precision */
                  datum.getNumericCellValue.toInt
                }
                case _ => {
                  val v = excelHelper.safeCellStringValue(datum)
                  try { dateFormatter.parse(v) }
                  catch {
                    case NonFatal(e) =>
                      /* If fails to parse, then tries the way used in 2.0 and 1.x for backwards compatibility.
                       */
                      ExcelDateTimeStringUtils
                        .stringToDate(v, options.zoneId)
                        .getOrElse(throw e)
                  }
                }
              }
            }
          }

      case _: StringType =>
        (d: Cell) =>
          nullSafeDatum(d, name, nullable, options) { datum =>
            UTF8String.fromString(excelHelper.safeCellStringValue(datum))
          }

      /* We don't actually hit this exception though, we keep it for understand ability
       */
      case _ => throw new RuntimeException(s"Unsupported type: ${dataType.typeName}")
    }

  private def nullSafeDatum(datum: Cell, name: String, nullable: Boolean, options: ExcelOptions)(
    converter: ValueConverter
  ): Any = {
    val cellType = if (datum.getCellType == CellType.FORMULA) datum.getCachedFormulaResultType else datum.getCellType
    val ret = cellType match {
      case CellType.BLANK | CellType._NONE => null
      case CellType.ERROR => if (options.useNullForErrorCells) null else converter.apply(datum)
      case CellType.STRING =>
        if (datum.getStringCellValue == options.nullValue) null else converter.apply(datum)
      case _ => converter.apply(datum)
    }

    if (ret == null && !nullable) {
      throw new RuntimeException(s"null value found but field $name is not nullable.")
    }

    ret
  }

  /** Parses a single Excel string and turns it into either one resulting row or no row (if the the record is
    * malformed).
    */
  val parse: Vector[Cell] => Option[InternalRow] = {
    /* This is intentionally a val to create a function once and reuse. */
    if (requiredSchema.isEmpty) {
      /* If partition attributes scanned only, `schema` gets empty. */
      (_: Vector[Cell]) => Some(InternalRow.empty)
    } else {
      /* parse if the requiredSchema is nonEmpty */
      (input: Vector[Cell]) => convert(input)
    }
  }

  private def convert(tokens: Vector[Cell]): Option[InternalRow] = {
    if (tokens == null) {
      throw BadRecordException(() => getCurrentInput, () => None, new RuntimeException("Malformed Excel record"))
    }

    var badRecordException: Option[Throwable] =
      if (tokens.length != parsedSchema.length) {

        /* If the number of tokens doesn't match the schema, we should treat it as a malformed record. However, we
         * still have chance to parse some of the tokens. It continues to parses the tokens normally and sets null when
         * `ArrayIndexOutOfBoundsException` occurs for missing tokens.
         */
        Some(new RuntimeException("Malformed Excel record"))
      } else None

    /* When the length of the returned tokens is identical to the length of the parsed schema, we just need to:
     *   1. Convert the tokens that correspond to the required schema. 2. Apply the pushdown filters to `requiredRow`.
     */
    var i = 0
    val row = requiredRow.get
    var skipRow = false
    while (i < requiredSchema.length) {
      try {
        if (skipRow) { row.setNullAt(i) }
        else {
          if (rowNumberPosition.isDefined && i == rowNumberPosition.get) {
            /* Handle additional excel-row-number */
            if (tokens.isEmpty) { row.setNullAt(i) }
            else { row(i) = tokens.head.getRowIndex }
          } else {
            /* Normal data column */
            row(i) = valueConverters(i).apply(tokens(tokenIndexArr(i)))
          }

          if (pushedFilters.skipRow(row, i)) { skipRow = true }
        }
      } catch {
        case NonFatal(e) =>
          badRecordException = badRecordException.orElse(Some(e))
          row.setNullAt(i)
      }
      i += 1
    }
    if (skipRow) { noRows }
    else {
      if (badRecordException.isDefined) {
        throw BadRecordException(() => getCurrentInput, () => requiredRow.headOption, badRecordException.get)
      } else { requiredRow }
    }
  }
}

object ExcelParser {

  /** Parses an iterator that contains Excel list-of-cells and turns it into an iterator of rows.
    */
  def parseIterator(
    rows: Iterator[Vector[Cell]],
    parser: ExcelParser,
    headerChecker: ExcelHeaderChecker,
    schema: StructType
  ): Iterator[InternalRow] = {

    /* Check the header (and pop one record) */
    val dataRows =
      if (parser.options.header) {
        val excelHelper = ExcelHelper(parser.options)
        headerChecker.checkHeaderColumnNames(excelHelper.getColumnNames(rows.next()))

        /* Ignore rows after header, if configured */
        rows.drop(parser.options.ignoreAfterHeader)
      } else { rows }

    val safeParser = new FailureSafeParser[Vector[Cell]](
      input => parser.parse(input),
      parser.options.parseMode,
      schema,
      parser.options.columnNameOfCorruptRecord
    )
    dataRows.flatMap(safeParser.parse)
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy