
com.cryptoregistry.tweet.salt.stream.Salsa20 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tweetpepper Show documentation
Show all versions of tweetpepper Show documentation
Built on the nucleus of TweetNaCl, TweetPepper provides contemporary key formats, key protection using SCrypt/SecretBox, digital signature support scheme featuring CubeHash, key encapsulation using Salsa20, and other useful features you probably want anyway.
The newest version!
//
// Copyright (c) 2011, Neil Alexander T.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with
// or without modification, are permitted provided that the following
// conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
package com.cryptoregistry.tweet.salt.stream;
/**
*
* This is "forked" from https://raw.githubusercontent.com/neilalexander/jnacl/master/crypto/salsa20.java
*
*
*/
public class Salsa20 {
public final static int CRYPTO_CORE_SALSA20_REF_OUTPUTBYTES = 64;
public final static int CRYPTO_CORE_SALSA20_REF_INPUTBYTES = 16;
public final static int CRYPTO_CORE_SALSA20_REF_KEYBYTES = 32;
public final static int CRYPTO_CORE_SALSA20_REF_CONSTBYTES = 16;
public final static int CRYPTO_STREAM_SALSA20_REF_KEYBYTES = 32;
public final static int CRYPTO_STREAM_SALSA20_REF_NONCEBYTES = 8;
public final static int ROUNDS = 20;
protected long rotate(int u, int c) {
return (u << c) | (u >>> (32 - c));
}
protected int load_littleendian(byte[] x, int offset) {
return ((int) (x[offset]) & 0xff)
| ((((int) (x[offset + 1]) & 0xff)) << 8)
| ((((int) (x[offset + 2]) & 0xff)) << 16)
| ((((int) (x[offset + 3]) & 0xff)) << 24);
}
protected void store_littleendian(byte[] x, int offset, int u) {
x[offset] = (byte) u;
u >>>= 8;
x[offset + 1] = (byte) u;
u >>>= 8;
x[offset + 2] = (byte) u;
u >>>= 8;
x[offset + 3] = (byte) u;
}
public int crypto_core(byte[] outv, byte[] inv, byte[] k, byte[] c) {
int x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
int j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15;
int i;
j0 = x0 = load_littleendian(c, 0);
j1 = x1 = load_littleendian(k, 0);
j2 = x2 = load_littleendian(k, 4);
j3 = x3 = load_littleendian(k, 8);
j4 = x4 = load_littleendian(k, 12);
j5 = x5 = load_littleendian(c, 4);
j6 = x6 = load_littleendian(inv, 0);
j7 = x7 = load_littleendian(inv, 4);
j8 = x8 = load_littleendian(inv, 8);
j9 = x9 = load_littleendian(inv, 12);
j10 = x10 = load_littleendian(c, 8);
j11 = x11 = load_littleendian(k, 16);
j12 = x12 = load_littleendian(k, 20);
j13 = x13 = load_littleendian(k, 24);
j14 = x14 = load_littleendian(k, 28);
j15 = x15 = load_littleendian(c, 12);
for (i = ROUNDS; i > 0; i -= 2) {
x4 ^= rotate(x0 + x12, 7);
x8 ^= rotate(x4 + x0, 9);
x12 ^= rotate(x8 + x4, 13);
x0 ^= rotate(x12 + x8, 18);
x9 ^= rotate(x5 + x1, 7);
x13 ^= rotate(x9 + x5, 9);
x1 ^= rotate(x13 + x9, 13);
x5 ^= rotate(x1 + x13, 18);
x14 ^= rotate(x10 + x6, 7);
x2 ^= rotate(x14 + x10, 9);
x6 ^= rotate(x2 + x14, 13);
x10 ^= rotate(x6 + x2, 18);
x3 ^= rotate(x15 + x11, 7);
x7 ^= rotate(x3 + x15, 9);
x11 ^= rotate(x7 + x3, 13);
x15 ^= rotate(x11 + x7, 18);
x1 ^= rotate(x0 + x3, 7);
x2 ^= rotate(x1 + x0, 9);
x3 ^= rotate(x2 + x1, 13);
x0 ^= rotate(x3 + x2, 18);
x6 ^= rotate(x5 + x4, 7);
x7 ^= rotate(x6 + x5, 9);
x4 ^= rotate(x7 + x6, 13);
x5 ^= rotate(x4 + x7, 18);
x11 ^= rotate(x10 + x9, 7);
x8 ^= rotate(x11 + x10, 9);
x9 ^= rotate(x8 + x11, 13);
x10 ^= rotate(x9 + x8, 18);
x12 ^= rotate(x15 + x14, 7);
x13 ^= rotate(x12 + x15, 9);
x14 ^= rotate(x13 + x12, 13);
x15 ^= rotate(x14 + x13, 18);
}
x0 += j0;
x1 += j1;
x2 += j2;
x3 += j3;
x4 += j4;
x5 += j5;
x6 += j6;
x7 += j7;
x8 += j8;
x9 += j9;
x10 += j10;
x11 += j11;
x12 += j12;
x13 += j13;
x14 += j14;
x15 += j15;
store_littleendian(outv, 0, x0);
store_littleendian(outv, 4, x1);
store_littleendian(outv, 8, x2);
store_littleendian(outv, 12, x3);
store_littleendian(outv, 16, x4);
store_littleendian(outv, 20, x5);
store_littleendian(outv, 24, x6);
store_littleendian(outv, 28, x7);
store_littleendian(outv, 32, x8);
store_littleendian(outv, 36, x9);
store_littleendian(outv, 40, x10);
store_littleendian(outv, 44, x11);
store_littleendian(outv, 48, x12);
store_littleendian(outv, 52, x13);
store_littleendian(outv, 56, x14);
store_littleendian(outv, 60, x15);
return 0;
}
public int crypto_stream(byte[] c, int clen, byte[] n, int noffset, byte[] k) {
byte[] inv = new byte[16];
byte[] block = new byte[64];
int coffset = 0;
if (clen == 0)
return 0;
for (int i = 0; i < 8; ++i)
inv[i] = n[noffset + i];
for (int i = 8; i < 16; ++i)
inv[i] = 0;
while (clen >= 64) {
this.crypto_core(c, inv, k, XSalsa20.sigma);
int u = 1;
for (int i = 8; i < 16; ++i) {
u += inv[i] & 0xff;
inv[i] = (byte) u;
u >>>= 8;
}
clen -= 64;
coffset += 64;
}
if (clen != 0) {
this.crypto_core(block, inv, k, XSalsa20.sigma);
for (int i = 0; i < clen; ++i)
c[coffset + i] = block[i];
}
return 0;
}
public int crypto_stream_xor(byte[] c, byte[] m, int mlen, byte[] n,
int noffset, byte[] k) {
byte[] inv = new byte[16];
byte[] block = new byte[64];
int coffset = 0;
int moffset = 0;
if (mlen == 0)
return 0;
for (int i = 0; i < 8; ++i)
inv[i] = n[noffset + i];
for (int i = 8; i < 16; ++i)
inv[i] = 0;
while (mlen >= 64) {
this.crypto_core(block, inv, k, XSalsa20.sigma);
for (int i = 0; i < 64; ++i)
c[coffset + i] = (byte) (m[moffset + i] ^ block[i]);
int u = 1;
for (int i = 8; i < 16; ++i) {
u += inv[i] & 0xff;
inv[i] = (byte) u;
u >>>= 8;
}
mlen -= 64;
coffset += 64;
moffset += 64;
}
if (mlen != 0) {
this.crypto_core(block, inv, k, XSalsa20.sigma);
for (int i = 0; i < mlen; ++i)
c[coffset + i] = (byte) (m[moffset + i] ^ block[i]);
}
return 0;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy