All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.cryptoregistry.tweet.salt.stream.Salsa20 Maven / Gradle / Ivy

Go to download

Built on the nucleus of TweetNaCl, TweetPepper provides contemporary key formats, key protection using SCrypt/SecretBox, digital signature support scheme featuring CubeHash, key encapsulation using Salsa20, and other useful features you probably want anyway.

The newest version!
//
//  Copyright (c) 2011, Neil Alexander T.
//  All rights reserved.
// 
//  Redistribution and use in source and binary forms, with
//  or without modification, are permitted provided that the following
//  conditions are met:
// 
//  - Redistributions of source code must retain the above copyright notice,
//    this list of conditions and the following disclaimer.
//  - Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
// 
//  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
//  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
//  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
//  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
//  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
//  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
//  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//  POSSIBILITY OF SUCH DAMAGE.
//

package com.cryptoregistry.tweet.salt.stream;

/**
 * 

* This is "forked" from https://raw.githubusercontent.com/neilalexander/jnacl/master/crypto/salsa20.java *

* */ public class Salsa20 { public final static int CRYPTO_CORE_SALSA20_REF_OUTPUTBYTES = 64; public final static int CRYPTO_CORE_SALSA20_REF_INPUTBYTES = 16; public final static int CRYPTO_CORE_SALSA20_REF_KEYBYTES = 32; public final static int CRYPTO_CORE_SALSA20_REF_CONSTBYTES = 16; public final static int CRYPTO_STREAM_SALSA20_REF_KEYBYTES = 32; public final static int CRYPTO_STREAM_SALSA20_REF_NONCEBYTES = 8; public final static int ROUNDS = 20; protected long rotate(int u, int c) { return (u << c) | (u >>> (32 - c)); } protected int load_littleendian(byte[] x, int offset) { return ((int) (x[offset]) & 0xff) | ((((int) (x[offset + 1]) & 0xff)) << 8) | ((((int) (x[offset + 2]) & 0xff)) << 16) | ((((int) (x[offset + 3]) & 0xff)) << 24); } protected void store_littleendian(byte[] x, int offset, int u) { x[offset] = (byte) u; u >>>= 8; x[offset + 1] = (byte) u; u >>>= 8; x[offset + 2] = (byte) u; u >>>= 8; x[offset + 3] = (byte) u; } public int crypto_core(byte[] outv, byte[] inv, byte[] k, byte[] c) { int x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15; int j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15; int i; j0 = x0 = load_littleendian(c, 0); j1 = x1 = load_littleendian(k, 0); j2 = x2 = load_littleendian(k, 4); j3 = x3 = load_littleendian(k, 8); j4 = x4 = load_littleendian(k, 12); j5 = x5 = load_littleendian(c, 4); j6 = x6 = load_littleendian(inv, 0); j7 = x7 = load_littleendian(inv, 4); j8 = x8 = load_littleendian(inv, 8); j9 = x9 = load_littleendian(inv, 12); j10 = x10 = load_littleendian(c, 8); j11 = x11 = load_littleendian(k, 16); j12 = x12 = load_littleendian(k, 20); j13 = x13 = load_littleendian(k, 24); j14 = x14 = load_littleendian(k, 28); j15 = x15 = load_littleendian(c, 12); for (i = ROUNDS; i > 0; i -= 2) { x4 ^= rotate(x0 + x12, 7); x8 ^= rotate(x4 + x0, 9); x12 ^= rotate(x8 + x4, 13); x0 ^= rotate(x12 + x8, 18); x9 ^= rotate(x5 + x1, 7); x13 ^= rotate(x9 + x5, 9); x1 ^= rotate(x13 + x9, 13); x5 ^= rotate(x1 + x13, 18); x14 ^= rotate(x10 + x6, 7); x2 ^= rotate(x14 + x10, 9); x6 ^= rotate(x2 + x14, 13); x10 ^= rotate(x6 + x2, 18); x3 ^= rotate(x15 + x11, 7); x7 ^= rotate(x3 + x15, 9); x11 ^= rotate(x7 + x3, 13); x15 ^= rotate(x11 + x7, 18); x1 ^= rotate(x0 + x3, 7); x2 ^= rotate(x1 + x0, 9); x3 ^= rotate(x2 + x1, 13); x0 ^= rotate(x3 + x2, 18); x6 ^= rotate(x5 + x4, 7); x7 ^= rotate(x6 + x5, 9); x4 ^= rotate(x7 + x6, 13); x5 ^= rotate(x4 + x7, 18); x11 ^= rotate(x10 + x9, 7); x8 ^= rotate(x11 + x10, 9); x9 ^= rotate(x8 + x11, 13); x10 ^= rotate(x9 + x8, 18); x12 ^= rotate(x15 + x14, 7); x13 ^= rotate(x12 + x15, 9); x14 ^= rotate(x13 + x12, 13); x15 ^= rotate(x14 + x13, 18); } x0 += j0; x1 += j1; x2 += j2; x3 += j3; x4 += j4; x5 += j5; x6 += j6; x7 += j7; x8 += j8; x9 += j9; x10 += j10; x11 += j11; x12 += j12; x13 += j13; x14 += j14; x15 += j15; store_littleendian(outv, 0, x0); store_littleendian(outv, 4, x1); store_littleendian(outv, 8, x2); store_littleendian(outv, 12, x3); store_littleendian(outv, 16, x4); store_littleendian(outv, 20, x5); store_littleendian(outv, 24, x6); store_littleendian(outv, 28, x7); store_littleendian(outv, 32, x8); store_littleendian(outv, 36, x9); store_littleendian(outv, 40, x10); store_littleendian(outv, 44, x11); store_littleendian(outv, 48, x12); store_littleendian(outv, 52, x13); store_littleendian(outv, 56, x14); store_littleendian(outv, 60, x15); return 0; } public int crypto_stream(byte[] c, int clen, byte[] n, int noffset, byte[] k) { byte[] inv = new byte[16]; byte[] block = new byte[64]; int coffset = 0; if (clen == 0) return 0; for (int i = 0; i < 8; ++i) inv[i] = n[noffset + i]; for (int i = 8; i < 16; ++i) inv[i] = 0; while (clen >= 64) { this.crypto_core(c, inv, k, XSalsa20.sigma); int u = 1; for (int i = 8; i < 16; ++i) { u += inv[i] & 0xff; inv[i] = (byte) u; u >>>= 8; } clen -= 64; coffset += 64; } if (clen != 0) { this.crypto_core(block, inv, k, XSalsa20.sigma); for (int i = 0; i < clen; ++i) c[coffset + i] = block[i]; } return 0; } public int crypto_stream_xor(byte[] c, byte[] m, int mlen, byte[] n, int noffset, byte[] k) { byte[] inv = new byte[16]; byte[] block = new byte[64]; int coffset = 0; int moffset = 0; if (mlen == 0) return 0; for (int i = 0; i < 8; ++i) inv[i] = n[noffset + i]; for (int i = 8; i < 16; ++i) inv[i] = 0; while (mlen >= 64) { this.crypto_core(block, inv, k, XSalsa20.sigma); for (int i = 0; i < 64; ++i) c[coffset + i] = (byte) (m[moffset + i] ^ block[i]); int u = 1; for (int i = 8; i < 16; ++i) { u += inv[i] & 0xff; inv[i] = (byte) u; u >>>= 8; } mlen -= 64; coffset += 64; moffset += 64; } if (mlen != 0) { this.crypto_core(block, inv, k, XSalsa20.sigma); for (int i = 0; i < mlen; ++i) c[coffset + i] = (byte) (m[moffset + i] ^ block[i]); } return 0; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy