com.dahuatech.hutool.core.thread.ThreadUtil Maven / Gradle / Ivy
Show all versions of java-sdk-common Show documentation
package com.dahuatech.hutool.core.thread;
import java.lang.Thread.UncaughtExceptionHandler;
import java.util.concurrent.*;
/**
* 线程池工具
*
* @author luxiaolei
*/
public class ThreadUtil {
/**
* 新建一个线程池
*
* @param threadSize 同时执行的线程数大小
* @return ExecutorService
*/
public static ExecutorService newExecutor(int threadSize) {
ExecutorBuilder builder = ExecutorBuilder.create();
if (threadSize > 0) {
builder.setCorePoolSize(threadSize);
}
return builder.build();
}
/**
* 获得一个新的线程池
*
* @return ExecutorService
*/
public static ExecutorService newExecutor() {
return ExecutorBuilder.create().useSynchronousQueue().build();
}
/**
* 获得一个新的线程池,只有单个线程
*
* @return ExecutorService
*/
public static ExecutorService newSingleExecutor() {
return Executors.newSingleThreadExecutor();
}
/**
* 获得一个新的线程池
* 如果maximumPoolSize =》 corePoolSize,在没有新任务加入的情况下,多出的线程将最多保留60s
*
* @param corePoolSize 初始线程池大小
* @param maximumPoolSize 最大线程池大小
* @return {@link ThreadPoolExecutor}
*/
public static ThreadPoolExecutor newExecutor(int corePoolSize, int maximumPoolSize) {
return ExecutorBuilder.create()
.setCorePoolSize(corePoolSize)
.setMaxPoolSize(maximumPoolSize)
.build();
}
/**
* 获得一个新的线程池
* 传入阻塞系数,线程池的大小计算公式为:CPU可用核心数 / (1 - 阻塞因子)
* Blocking Coefficient(阻塞系数) = 阻塞时间/(阻塞时间+使用CPU的时间)
* 计算密集型任务的阻塞系数为0,而IO密集型任务的阻塞系数则接近于1。
*
* see: http://blog.csdn.net/partner4java/article/details/9417663
*
* @param blockingCoefficient 阻塞系数,阻塞因子介于0~1之间的数,阻塞因子越大,线程池中的线程数越多。
* @return {@link ThreadPoolExecutor}
* @since 3.0.6
*/
public static ThreadPoolExecutor newExecutorByBlockingCoefficient(float blockingCoefficient) {
if (blockingCoefficient >= 1 || blockingCoefficient < 0) {
throw new IllegalArgumentException(
"[blockingCoefficient] must between 0 and 1, or equals 0.");
}
// 最佳的线程数 = CPU可用核心数 / (1 - 阻塞系数)
int poolSize = (int) (Runtime.getRuntime().availableProcessors() / (1 - blockingCoefficient));
return ExecutorBuilder.create()
.setCorePoolSize(poolSize)
.setMaxPoolSize(poolSize)
.setKeepAliveTime(0L)
.build();
}
/**
* 直接在公共线程池中执行线程
*
* @param runnable 可运行对象
*/
public static void execute(Runnable runnable) {
GlobalThreadPool.execute(runnable);
}
/**
* 执行异步方法
*
* @param runnable 需要执行的方法体
* @param isDaemon 是否守护线程。守护线程会在主线程结束后自动结束
* @return 执行的方法体
*/
public static Runnable excAsync(final Runnable runnable, boolean isDaemon) {
Thread thread =
new Thread() {
@Override
public void run() {
runnable.run();
}
};
thread.setDaemon(isDaemon);
thread.start();
return runnable;
}
/**
* 执行有返回值的异步方法
* Future代表一个异步执行的操作,通过get()方法可以获得操作的结果,如果异步操作还没有完成,则,get()会使当前线程阻塞
*
* @param 回调对象类型
* @param task {@link Callable}
* @return Future
*/
public static Future execAsync(Callable task) {
return GlobalThreadPool.submit(task);
}
/**
* 执行有返回值的异步方法
* Future代表一个异步执行的操作,通过get()方法可以获得操作的结果,如果异步操作还没有完成,则,get()会使当前线程阻塞
*
* @param runnable 可运行对象
* @return {@link Future}
* @since 3.0.5
*/
public static Future> execAsync(Runnable runnable) {
return GlobalThreadPool.submit(runnable);
}
/**
* 新建一个CompletionService,调用其submit方法可以异步执行多个任务,最后调用take方法按照完成的顺序获得其结果。
* 若未完成,则会阻塞
*
* @param 回调对象类型
* @return CompletionService
*/
public static CompletionService newCompletionService() {
return new ExecutorCompletionService<>(GlobalThreadPool.getExecutor());
}
/**
* 新建一个CompletionService,调用其submit方法可以异步执行多个任务,最后调用take方法按照完成的顺序获得其结果。
* 若未完成,则会阻塞
*
* @param 回调对象类型
* @param executor 执行器 {@link ExecutorService}
* @return CompletionService
*/
public static CompletionService newCompletionService(ExecutorService executor) {
return new ExecutorCompletionService<>(executor);
}
/**
* 新建一个CountDownLatch,一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待。
*
* @param threadCount 线程数量
* @return CountDownLatch
*/
public static CountDownLatch newCountDownLatch(int threadCount) {
return new CountDownLatch(threadCount);
}
/**
* 创建新线程,非守护线程,正常优先级,线程组与当前线程的线程组一致
*
* @param runnable {@link Runnable}
* @param name 线程名
* @return {@link Thread}
* @since 3.1.2
*/
public static Thread newThread(Runnable runnable, String name) {
final Thread t = newThread(runnable, name, false);
if (t.getPriority() != Thread.NORM_PRIORITY) {
t.setPriority(Thread.NORM_PRIORITY);
}
return t;
}
/**
* 创建新线程
*
* @param runnable {@link Runnable}
* @param name 线程名
* @param isDaemon 是否守护线程
* @return {@link Thread}
* @since 4.1.2
*/
public static Thread newThread(Runnable runnable, String name, boolean isDaemon) {
final Thread t = new Thread(null, runnable, name);
t.setDaemon(isDaemon);
return t;
}
/**
* 挂起当前线程
*
* @param timeout 挂起的时长
* @param timeUnit 时长单位
* @return 被中断返回false,否则true
*/
public static boolean sleep(Number timeout, TimeUnit timeUnit) {
try {
timeUnit.sleep(timeout.longValue());
} catch (InterruptedException e) {
return false;
}
return true;
}
/**
* 挂起当前线程
*
* @param millis 挂起的毫秒数
* @return 被中断返回false,否则true
*/
public static boolean sleep(Number millis) {
if (millis == null) {
return true;
}
try {
Thread.sleep(millis.longValue());
} catch (InterruptedException e) {
return false;
}
return true;
}
/**
* 考虑{@link Thread#sleep(long)}方法有可能时间不足给定毫秒数,此方法保证sleep时间不小于给定的毫秒数
*
* @param millis 给定的sleep时间
* @return 被中断返回false,否则true
* @see ThreadUtil#sleep(Number)
*/
public static boolean safeSleep(Number millis) {
long millisLong = millis.longValue();
long done = 0;
while (done < millisLong) {
long before = System.currentTimeMillis();
if (false == sleep(millisLong - done)) {
return false;
}
long after = System.currentTimeMillis();
done += (after - before);
}
return true;
}
/** @return 获得堆栈列表 */
public static StackTraceElement[] getStackTrace() {
return Thread.currentThread().getStackTrace();
}
/**
* 获得堆栈项
*
* @param i 第几个堆栈项
* @return 堆栈项
*/
public static StackTraceElement getStackTraceElement(int i) {
StackTraceElement[] stackTrace = getStackTrace();
if (i < 0) {
i += stackTrace.length;
}
return stackTrace[i];
}
/**
* 创建本地线程对象
*
* @param 持有对象类型
* @param isInheritable 是否为子线程提供从父线程那里继承的值
* @return 本地线程
*/
public static ThreadLocal createThreadLocal(boolean isInheritable) {
if (isInheritable) {
return new InheritableThreadLocal<>();
} else {
return new ThreadLocal<>();
}
}
/**
* 创建ThreadFactoryBuilder
*
* @return ThreadFactoryBuilder
* @see ThreadFactoryBuilder#build()
* @since 4.1.13
*/
public static ThreadFactoryBuilder createThreadFactoryBuilder() {
return ThreadFactoryBuilder.create();
}
/**
* 结束线程,调用此方法后,线程将抛出 {@link InterruptedException}异常
*
* @param thread 线程
* @param isJoin 是否等待结束
*/
public static void interrupt(Thread thread, boolean isJoin) {
if (null != thread && false == thread.isInterrupted()) {
thread.interrupt();
if (isJoin) {
waitForDie(thread);
}
}
}
/**
* 等待线程结束. 调用 {@link Thread#join()} 并忽略 {@link InterruptedException}
*
* @param thread 线程
*/
public static void waitForDie(Thread thread) {
if (null == thread) {
return;
}
boolean dead = false;
do {
try {
thread.join();
dead = true;
} catch (InterruptedException e) {
// ignore
}
} while (false == dead);
}
/**
* 获取JVM中与当前线程同组的所有线程
*
* @return 线程对象数组
*/
public static Thread[] getThreads() {
return getThreads(Thread.currentThread().getThreadGroup().getParent());
}
/**
* 获取JVM中与当前线程同组的所有线程
* 使用数组二次拷贝方式,防止在线程列表获取过程中线程终止
* from Voovan
*
* @param group 线程组
* @return 线程对象数组
*/
public static Thread[] getThreads(ThreadGroup group) {
final Thread[] slackList = new Thread[group.activeCount() * 2];
final int actualSize = group.enumerate(slackList);
final Thread[] result = new Thread[actualSize];
System.arraycopy(slackList, 0, result, 0, actualSize);
return result;
}
/**
* 获取进程的主线程
* from Voovan
*
* @return 进程的主线程
*/
public static Thread getMainThread() {
for (Thread thread : getThreads()) {
if (thread.getId() == 1) {
return thread;
}
}
return null;
}
/**
* 获取当前线程的线程组
*
* @return 线程组
* @since 3.1.2
*/
public static ThreadGroup currentThreadGroup() {
final SecurityManager s = System.getSecurityManager();
return (null != s) ? s.getThreadGroup() : Thread.currentThread().getThreadGroup();
}
/**
* 创建线程工厂
*
* @param prefix 线程名前缀
* @param isDaemon 是否守护线程
* @return {@link ThreadFactory}
* @since 4.0.0
*/
public static ThreadFactory newNamedThreadFactory(String prefix, boolean isDaemon) {
return new NamedThreadFactory(prefix, isDaemon);
}
/**
* 创建线程工厂
*
* @param prefix 线程名前缀
* @param threadGroup 线程组,可以为null
* @param isDaemon 是否守护线程
* @return {@link ThreadFactory}
* @since 4.0.0
*/
public static ThreadFactory newNamedThreadFactory(
String prefix, ThreadGroup threadGroup, boolean isDaemon) {
return new NamedThreadFactory(prefix, threadGroup, isDaemon);
}
/**
* 创建线程工厂
*
* @param prefix 线程名前缀
* @param threadGroup 线程组,可以为null
* @param isDaemon 是否守护线程
* @param handler 未捕获异常处理
* @return {@link ThreadFactory}
* @since 4.0.0
*/
public static ThreadFactory newNamedThreadFactory(
String prefix, ThreadGroup threadGroup, boolean isDaemon, UncaughtExceptionHandler handler) {
return new NamedThreadFactory(prefix, threadGroup, isDaemon, handler);
}
/**
* 阻塞当前线程,保证在main方法中执行不被退出
*
* @param obj 对象所在线程
* @since 4.5.6
*/
public static void sync(Object obj) {
synchronized (obj) {
try {
obj.wait();
} catch (InterruptedException e) {
// ignore
}
}
}
/**
* 并发测试
* 此方法用于测试多线程下执行某些逻辑的并发性能
* 调用此方法会导致当前线程阻塞。
* 结束后可调用{@link ConcurrencyTester#getInterval()} 方法获取执行时间
*
* @param threadSize 并发线程数
* @param runnable 执行的逻辑实现
* @return {@link ConcurrencyTester}
* @since 4.5.8
*/
public static ConcurrencyTester concurrencyTest(int threadSize, Runnable runnable) {
return (new ConcurrencyTester(threadSize)).test(runnable);
}
}