All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.darwinsys.diff.Diff Maven / Gradle / Ivy

package com.darwinsys.diff;

import java.util.ArrayList;
import java.util.Hashtable;

  /**
   * BSD-licensed Java implementation of "An O(ND) Difference Algorithm 
   * and its Variations" by Eugene Myers, published in
   * Algorithmica Vol. 1 No. 2, 1986, p 251.
   * 
   * C# version written by Mathias Hertel, http://www.mathertel.de
   * Mathias Hertel's version ported to Java by Ian Darwin, http://www.darwinsys.com/
   * Comments below this line are from Hertel's original.
   * ----------------------------------------------------
   * 
   * There are many C, Java, Lisp implementations public available but they all seem to come
   * from the same source (diffutils) that is under the (unfree) GNU public License
   * and cannot be reused as a sourcecode for a commercial application.
   * There are very old C implementations that use other (worse) algorithms.
   * Microsoft also published sourcecode of a diff-tool (windiff) that uses some tree data.
   * Also, a direct transfer from a C source to C# is not easy because there is a lot of pointer
   * arithmetic in the typical C solutions and i need a managed solution.
   * These are the reasons why I implemented the original published algorithm from the scratch and
   * make it avaliable without the GNU license limitations.
   * I do not need a high performance diff tool because it is used only sometimes.
   * I will do some performace tweaking when needed.
   * 
   * The algorithm itself is comparing 2 arrays of numbers so when comparing 2 text documents
   * each line is converted into a (hash) number. See DiffText(). 
   * 
   * Some changes to the original algorithm:
   * The original algorithm was described using a recursive approach and comparing zero indexed arrays.
   * Extracting sub-arrays and rejoining them is very performance and memory intensive so the same
   * (readonly) data arrays are passed arround together with their lower and upper bounds.
   * This circumstance makes the LCS and SMS functions more complicate.
   * I added some code to the LCS function to get a fast response on sub-arrays that are identical,
   * completely deleted or inserted.
   * 
   * The result from a comparisation is stored in 2 arrays that flag for modified (deleted or inserted)
   * lines in the 2 data arrays. These bits are then analysed to produce a array of Item objects.
   * 
   * Further possible optimizations:
   * (first rule: don't do it; second: don't do it yet)
   * The arrays DataA and DataB are passed as parameters, but are never changed after the creation
   * so they can be members of the class to avoid the paramter overhead.
   * In SMS is a lot of boundary arithmetic in the for-D and for-k loops that can be done by increment
   * and decrement of local variables.
   * The DownVector and UpVector arrays are always created and destroyed each time the SMS gets called.
   * It is possible to reuse them when transfering them to members of the class.
   * See TODO: hints.
   * 
   * diff.cs: A port of the algorithm to C#
   * Copyright (c) by Matthias Hertel, http://www.mathertel.de
   * This work is licensed under a BSD style license. See http://www.mathertel.de/License.aspx
   * 
   * Hertel's version Changes:
   * 2002.09.20 There was a "hang" in some situations.
   * Now I undestand a little bit more of the SMS algorithm. 
   * There have been overlapping boxes; that where analyzed partial differently.
   * One return-point is enough.
   * A assertion was added in CreateDiffs when in debug-mode, that counts the number of equal (no modified) lines in both arrays.
   * They must be identical.
   * 
   * 2003.02.07 Out of bounds error in the Up/Down vector arrays in some situations.
   * The two vetors are now accessed using different offsets that are adjusted using the start k-Line. 
   * A test case is added. 
   * 
   * 2006.03.05 Some documentation and a direct Diff entry point.
   * 
   * 2006.03.08 Refactored the API to static methods on the Diff class to make usage simpler.
   * 2006.03.10 using the standard Debug class for self-test now.
   *            compile with: csc /target:exe /out:diffTest.exe /d:DEBUG /d:TRACE /d:SELFTEST Diff.cs
   * 2007.01.06 license agreement changed to a BSD style license.
   * 2007.06.03 added the Optimize method.
   * 2007.09.23 UpVector and DownVector optimization by Jan Stoklasa ().
   * 2008.05.31 Adjusted the testing code that failed because of the Optimize method (not a bug in the diff algorithm).
   * 2008.10.08 Fixing a test case and adding a new test case.
  */
  public class Diff {

    /**details of one difference. */
    public static class Item {
      /**Start Line number in Data A. */
      public int startA;
      /**Start Line number in Data B. */
      public int startB;

      /**Number of changes in Data A. */
      public int deletedA;
      /**Number of changes in Data B. */
      public int insertedB;
    }

    /**
     * Shortest Middle Snake Return Data
    */
    private static class SMSRD {
      int x, y;
      // int u, v;  // 2002.09.20: no need for 2 points 
    }

    /**
     * Find the difference in 2 texts, comparing by textlines.
     * @param TextA A-version of the text (usually the old one)
     * @param TextB B-version of the text (usually the new one)
     * @return Returns a array of Items that describe the differences.
    */
    public static Item[] diffText(String TextA, String TextB) {
      return (diffText(TextA, TextB, false, false, false));
    }


    /**
     * Find the difference in 2 text documents, comparing by textlines.
     * The algorithm itself is comparing 2 arrays of numbers so when comparing 2 text documents
     * each line is converted into a (hash) number. This hash-value is computed by storing all
     * textlines into a common hashtable so i can find dublicates in there, and generating a 
     * new number each time a new textline is inserted.
     * @param TextA A-version of the text (usualy the old one)
     * @param TextB B-version of the text (usualy the new one)
     * @param trimSpace When set to true, all leading and trailing whitespace characters are stripped out before the comparation is done.
     * @param ignoreSpace When set to true, all whitespace characters are converted to a single space character before the comparation is done.
     * @param ignoreCase When set to true, all characters are converted to their lowercase equivivalence before the comparation is done.
     * @return Returns a array of Items that describe the differences.
    */
    public static Item[] diffText(String TextA, String TextB, boolean trimSpace, boolean ignoreSpace, boolean ignoreCase) {
      // prepare the input-text and convert to comparable numbers.
      Hashtable h = new Hashtable<>(TextA.length() + TextB.length());

      // The A-Version of the data (original data) to be compared.
      DiffData DataA = new DiffData(DiffCodes(TextA, h, trimSpace, ignoreSpace, ignoreCase));

      // The B-Version of the data (modified data) to be compared.
      DiffData DataB = new DiffData(DiffCodes(TextB, h, trimSpace, ignoreSpace, ignoreCase));

      h = null; // free up hashtable memory (maybe)

      int MAX = DataA.Length + DataB.Length + 1;
      // vector for the (0,0) to (x,y) search
      int[] DownVector = new int[2 * MAX + 2];
      // vector for the (u,v) to (N,M) search
      int[] UpVector = new int[2 * MAX + 2];

      LCS(DataA, 0, DataA.Length, DataB, 0, DataB.Length, DownVector, UpVector);

      Optimize(DataA);
      Optimize(DataB);
      return CreateDiffs(DataA, DataB);
    } // DiffText


    /**
     * If a sequence of modified lines starts with a line that contains the same content
     * as the line that appends the changes, the difference sequence is modified so that the
     * appended line and not the starting line is marked as modified.
     * This leads to more readable diff sequences when comparing text files.
     * @param data A Diff data buffer containing the identified changes.
    */
    private static void Optimize(DiffData data) {
      int startPos, endPos;

      startPos = 0;
      while (startPos < data.Length) {
        while ((startPos < data.Length) && (data.modified[startPos] == false))
          startPos++;
        endPos = startPos;
        while ((endPos < data.Length) && (data.modified[endPos] == true))
          endPos++;

        if ((endPos < data.Length) && (data.data[startPos] == data.data[endPos])) {
          data.modified[startPos] = false;
          data.modified[endPos] = true;
        } else {
          startPos = endPos;
        } // if
      } // while
    } // Optimize


    /**
     * Find the difference in 2 arrays of integers.
     * @param arrayA A-version of the numbers (usualy the old one)
     * @param arrayB B-version of the numbers (usualy the new one)
     * @return Returns a array of Items that describe the differences.
    */
    public Item[] DiffInt(int[] arrayA, int[] arrayB) {
      // The A-Version of the data (original data) to be compared.
      DiffData dataA = new DiffData(arrayA);

      // The B-Version of the data (modified data) to be compared.
      DiffData dataB = new DiffData(arrayB);

      int MAX = dataA.Length + dataB.Length + 1;
      // vector for the (0,0) to (x,y) search
      int[] downVector = new int[2 * MAX + 2];
      // vector for the (u,v) to (N,M) search
      int[] upVector = new int[2 * MAX + 2];

      LCS(dataA, 0, dataA.Length, dataB, 0, dataB.Length, downVector, upVector);
      return CreateDiffs(dataA, dataB);
    }


    /**
     * This function converts all textlines of the text into unique numbers for every unique textline
     * so further work can work only with simple numbers.
     * @param aText the input text
     * @param h This extern initialized hashtable is used for storing all ever used textlines.
     * @param trimSpace ignore leading and trailing space characters
     * @return a array of integers.
    */
    private static int[] DiffCodes(String aText, Hashtable h, boolean trimSpace, boolean ignoreSpace, boolean ignoreCase) {
      // get all codes of the text
      String[] Lines;
      int[] Codes;
      int lastUsedCode = h.size();
      Integer aCode;
      String s;

      // strip off all cr, only use lf as textline separator.
      aText = aText.replace("\r", "");
      Lines = aText.split("\n");

      Codes = new int[Lines.length];

      for (int i = 0; i < Lines.length; ++i) {
        s = Lines[i];
        if (trimSpace)
          s = s.trim();

        if (ignoreSpace) {
          s = s.replaceAll("\\s+", " ");            // TODO: optimize IF NEEDED: faster blank removal.
        }

        if (ignoreCase)
          s = s.toLowerCase();

        aCode = h.get(s);
        if (aCode == null) {
          lastUsedCode++;
          h.put(s, lastUsedCode);
          Codes[i] = lastUsedCode;
        } else {
          Codes[i] = aCode;
        } // if
      } // for
      return (Codes);
    } // DiffCodes


    /**
     * This is the algorithm to find the Shortest Middle Snake (SMS).
     * @param DataA sequence A
     * @param LowerA lower bound of the actual range in DataA
     * @param UpperA upper bound of the actual range in DataA (exclusive)
     * @param DataB sequence B
     * @param LowerB lower bound of the actual range in DataB
     * @param UpperB upper bound of the actual range in DataB (exclusive)
     * @param DownVector a vector for the (0,0) to (x,y) search. Passed as a parameter for speed reasons.
     * @param UpVector a vector for the (u,v) to (N,M) search. Passed as a parameter for speed reasons.
     * @return a MiddleSnakeData record containing x,y and u,v
    */
    private static SMSRD SMS(DiffData DataA, int LowerA, int UpperA, DiffData DataB, int LowerB, int UpperB,
      int[] DownVector, int[] UpVector) {

      SMSRD ret = new SMSRD();
      int MAX = DataA.Length + DataB.Length + 1;

      int DownK = LowerA - LowerB; // the k-line to start the forward search
      int UpK = UpperA - UpperB; // the k-line to start the reverse search

      int Delta = (UpperA - LowerA) - (UpperB - LowerB);
      boolean oddDelta = (Delta & 1) != 0;

      // The vectors in the publication accepts negative indexes. the vectors implemented here are 0-based
      // and are access using a specific offset: UpOffset UpVector and DownOffset for DownVektor
      int DownOffset = MAX - DownK;
      int UpOffset = MAX - UpK;

      int MaxD = ((UpperA - LowerA + UpperB - LowerB) / 2) + 1;

      // System.out.println(2, "SMS", String.format("Search the box: A[{0}-{1}] to B[{2}-{3}]", LowerA, UpperA, LowerB, UpperB));

      // init vectors
      DownVector[DownOffset + DownK + 1] = LowerA;
      UpVector[UpOffset + UpK - 1] = UpperA;

      for (int D = 0; D <= MaxD; D++) {

        // Extend the forward path.
        for (int k = DownK - D; k <= DownK + D; k += 2) {
          // System.out.println(0, "SMS", "extend forward path " + k.ToString());

          // find the only or better starting point
          int x, y;
          if (k == DownK - D) {
            x = DownVector[DownOffset + k + 1]; // down
          } else {
            x = DownVector[DownOffset + k - 1] + 1; // a step to the right
            if ((k < DownK + D) && (DownVector[DownOffset + k + 1] >= x))
              x = DownVector[DownOffset + k + 1]; // down
          }
          y = x - k;

          // find the end of the furthest reaching forward D-path in diagonal k.
          while ((x < UpperA) && (y < UpperB) && (DataA.data[x] == DataB.data[y])) {
            x++; y++;
          }
          DownVector[DownOffset + k] = x;

          // overlap ?
          if (oddDelta && (UpK - D < k) && (k < UpK + D)) {
            if (UpVector[UpOffset + k] <= DownVector[DownOffset + k]) {
              ret.x = DownVector[DownOffset + k];
              ret.y = DownVector[DownOffset + k] - k;
              // ret.u = UpVector[UpOffset + k];      // 2002.09.20: no need for 2 points 
              // ret.v = UpVector[UpOffset + k] - k;
              return (ret);
            } // if
          } // if

        } // for k

        // Extend the reverse path.
        for (int k = UpK - D; k <= UpK + D; k += 2) {
          // System.out.println(0, "SMS", "extend reverse path " + k.ToString());

          // find the only or better starting point
          int x, y;
          if (k == UpK + D) {
            x = UpVector[UpOffset + k - 1]; // up
          } else {
            x = UpVector[UpOffset + k + 1] - 1; // left
            if ((k > UpK - D) && (UpVector[UpOffset + k - 1] < x))
              x = UpVector[UpOffset + k - 1]; // up
          } // if
          y = x - k;

          while ((x > LowerA) && (y > LowerB) && (DataA.data[x - 1] == DataB.data[y - 1])) {
            x--; y--; // diagonal
          }
          UpVector[UpOffset + k] = x;

          // overlap ?
          if (!oddDelta && (DownK - D <= k) && (k <= DownK + D)) {
            if (UpVector[UpOffset + k] <= DownVector[DownOffset + k]) {
              ret.x = DownVector[DownOffset + k];
              ret.y = DownVector[DownOffset + k] - k;
              // ret.u = UpVector[UpOffset + k];     // 2002.09.20: no need for 2 points 
              // ret.v = UpVector[UpOffset + k] - k;
              return (ret);
            } // if
          } // if

        } // for k

      } // for D

      throw new IllegalStateException("the algorithm should never come here.");
    } // SMS


    /**
     * This is the divide-and-conquer implementation of the longest common-subsequence (LCS) 
     * algorithm.
     * The published algorithm passes recursively parts of the A and B sequences.
     * To avoid copying these arrays the lower and upper bounds are passed while the sequences stay constant.
     * @param DataA sequence A
     * @param LowerA lower bound of the actual range in DataA
     * @param UpperA upper bound of the actual range in DataA (exclusive)
     * @param DataB sequence B
     * @param LowerB lower bound of the actual range in DataB
     * @param UpperB upper bound of the actual range in DataB (exclusive)
     * @param DownVector a vector for the (0,0) to (x,y) search. Passed as a parameter for speed reasons.
     * @param UpVector a vector for the (u,v) to (N,M) search. Passed as a parameter for speed reasons.
    */
    private static void LCS(DiffData DataA, int LowerA, int UpperA, DiffData DataB, int LowerB, int UpperB, int[] DownVector, int[] UpVector) {
      // System.out.println(2, "LCS", String.format("Analyse the box: A[{0}-{1}] to B[{2}-{3}]", LowerA, UpperA, LowerB, UpperB));

      // Fast walkthrough equal lines at the start
      while (LowerA < UpperA && LowerB < UpperB && DataA.data[LowerA] == DataB.data[LowerB]) {
        LowerA++; LowerB++;
      }

      // Fast walkthrough equal lines at the end
      while (LowerA < UpperA && LowerB < UpperB && DataA.data[UpperA - 1] == DataB.data[UpperB - 1]) {
        --UpperA; --UpperB;
      }

      if (LowerA == UpperA) {
        // mark as inserted lines.
        while (LowerB < UpperB)
          DataB.modified[LowerB++] = true;

      } else if (LowerB == UpperB) {
        // mark as deleted lines.
        while (LowerA < UpperA)
          DataA.modified[LowerA++] = true;

      } else {
        // Find the middle snakea and length of an optimal path for A and B
        SMSRD smsrd = SMS(DataA, LowerA, UpperA, DataB, LowerB, UpperB, DownVector, UpVector);
        // System.out.println(2, "MiddleSnakeData", String.format("{0},{1}", smsrd.x, smsrd.y));

        // The path is from LowerX to (x,y) and (x,y) to UpperX
        LCS(DataA, LowerA, smsrd.x, DataB, LowerB, smsrd.y, DownVector, UpVector);
        LCS(DataA, smsrd.x, UpperA, DataB, smsrd.y, UpperB, DownVector, UpVector);  // 2002.09.20: no need for 2 points 
      }
    } // LCS()


    /**Scan the tables of which lines are inserted and deleted,
     * producing an edit script in forward order.  
     * dynamic array
     */
    private static Item[] CreateDiffs(DiffData DataA, DiffData DataB) {
      ArrayList a = new ArrayList();
      Item aItem;
      Item[] result;

      int startA, startB;
      int lineA, lineB;

      lineA = 0;
      lineB = 0;
      while (lineA < DataA.Length || lineB < DataB.Length) {
        if ((lineA < DataA.Length) && (!DataA.modified[lineA])
          && (lineB < DataB.Length) && (!DataB.modified[lineB])) {
          // equal lines
          lineA++;
          lineB++;

        } else {
          // maybe deleted and/or inserted lines
          startA = lineA;
          startB = lineB;

          while (lineA < DataA.Length && (lineB >= DataB.Length || DataA.modified[lineA]))
            // while (LineA < DataA.Length && DataA.modified[LineA])
            lineA++;

          while (lineB < DataB.Length && (lineA >= DataA.Length || DataB.modified[lineB]))
            // while (LineB < DataB.Length && DataB.modified[LineB])
            lineB++;

          if ((startA < lineA) || (startB < lineB)) {
            // store a new difference-item
            aItem = new Item();
            aItem.startA = startA;
            aItem.startB = startB;
            aItem.deletedA = lineA - startA;
            aItem.insertedB = lineB - startB;
            a.add(aItem);
          } // if
        } // if
      } // while

      result = a.toArray(new Item[a.size()]);

      return (result);
    }


  /** Data on one input file being compared.  
  */
  static class DiffData
  {

    /**Number of elements (lines). */
    private int Length;

    /**Buffer of numbers that will be compared. */
    private int[] data;

    /**
     * Array of booleans that flag for modified data.
     * This is the result of the diff.
     * This means deletedA in the first Data or inserted in the second Data.
    */
    private boolean[] modified;

    /**
     * Initialize the Diff-Data buffer.
     * @param data reference to the buffer
    */
    protected DiffData(int[] initData) {
      data = initData;
      Length = initData.length;
      modified = new boolean[Length + 2];
    } // DiffData

  } // class DiffData

} // class Diff





© 2015 - 2024 Weber Informatics LLC | Privacy Policy