com.dataartisans.flinktraining.exercises.datastream_java.connectors.PopularPlacesFromKafka Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of flink-training-exercises Show documentation
Show all versions of flink-training-exercises Show documentation
Utilities and material for an Apache Flink Training provided by data Artisans.
The newest version!
/*
* Copyright 2015 data Artisans GmbH
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.dataartisans.flinktraining.exercises.datastream_java.connectors;
import com.dataartisans.flinktraining.exercises.datastream_java.datatypes.TaxiRide;
import com.dataartisans.flinktraining.exercises.datastream_java.utils.GeoUtils;
import com.dataartisans.flinktraining.exercises.datastream_java.utils.TaxiRideSchema;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple4;
import org.apache.flink.api.java.tuple.Tuple5;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer09;
import org.apache.flink.util.Collector;
import java.util.Properties;
/**
* Java reference implementation for the "Popular Places" exercise of the Flink training
* (http://dataartisans.github.io/flink-training).
*
* The task of the exercise is to identify every five minutes popular areas where many taxi rides
* arrived or departed in the last 15 minutes.
* The input is read from a Kafka topic that containes cleansed taxi rides.
*
*/
public class PopularPlacesFromKafka {
private static final String LOCAL_ZOOKEEPER_HOST = "localhost:2181";
private static final String LOCAL_KAFKA_BROKER = "localhost:9092";
private static final String RIDE_SPEED_GROUP = "rideSpeedGroup";
private static final int MAX_EVENT_DELAY = 60; // rides are at most 60 sec out-of-order.
public static void main(String[] args) throws Exception {
final int popThreshold = 20; // threshold for popular places
// set up streaming execution environment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
env.getConfig().setAutoWatermarkInterval(1000);
// configure the Kafka consumer
Properties kafkaProps = new Properties();
kafkaProps.setProperty("zookeeper.connect", LOCAL_ZOOKEEPER_HOST);
kafkaProps.setProperty("bootstrap.servers", LOCAL_KAFKA_BROKER);
kafkaProps.setProperty("group.id", RIDE_SPEED_GROUP);
// always read the Kafka topic from the start
kafkaProps.setProperty("auto.offset.reset", "earliest");
// create a Kafka consumer
FlinkKafkaConsumer09 consumer = new FlinkKafkaConsumer09<>(
"cleansedRides",
new TaxiRideSchema(),
kafkaProps);
// assign a timestamp extractor to the consumer
consumer.assignTimestampsAndWatermarks(new TaxiRideTSExtractor());
// create a TaxiRide data stream
DataStream rides = env.addSource(consumer);
// find popular places
DataStream> popularPlaces = rides
// match ride to grid cell and event type (start or end)
.map(new GridCellMatcher())
// partition by cell id and event type
.keyBy(0, 1)
// build sliding window
.timeWindow(Time.minutes(15), Time.minutes(5))
// count ride events in window
.apply(new RideCounter())
// filter by popularity threshold
.filter(new FilterFunction>() {
@Override
public boolean filter(Tuple4 count) throws Exception {
return count.f3 >= popThreshold;
}
})
// map grid cell to coordinates
.map(new GridToCoordinates());
popularPlaces.print();
// execute the transformation pipeline
env.execute("Popular Places from Kafka");
}
/**
* Assigns timestamps to TaxiRide records.
* Watermarks are a fixed time interval behind the max timestamp and are periodically emitted.
*/
public static class TaxiRideTSExtractor extends BoundedOutOfOrdernessTimestampExtractor {
public TaxiRideTSExtractor() {
super(Time.seconds(MAX_EVENT_DELAY));
}
@Override
public long extractTimestamp(TaxiRide ride) {
if (ride.isStart) {
return ride.startTime.getMillis();
}
else {
return ride.endTime.getMillis();
}
}
}
/**
* Maps taxi ride to grid cell and event type.
* Start records use departure location, end record use arrival location.
*/
public static class GridCellMatcher implements MapFunction> {
@Override
public Tuple2 map(TaxiRide taxiRide) throws Exception {
return new Tuple2<>(
GeoUtils.mapToGridCell(taxiRide.startLon, taxiRide.startLat),
taxiRide.isStart
);
}
}
/**
* Counts the number of rides arriving or departing.
*/
public static class RideCounter implements WindowFunction<
Tuple2, // input type
Tuple4, // output type
Tuple, // key type
TimeWindow> // window type
{
@SuppressWarnings("unchecked")
@Override
public void apply(
Tuple key,
TimeWindow window,
Iterable> gridCells,
Collector> out) throws Exception {
int cellId = ((Tuple2)key).f0;
boolean isStart = ((Tuple2)key).f1;
long windowTime = window.getEnd();
int cnt = 0;
for(Tuple2 c : gridCells) {
cnt += 1;
}
out.collect(new Tuple4<>(cellId, windowTime, isStart, cnt));
}
}
/**
* Maps the grid cell id back to longitude and latitude coordinates.
*/
public static class GridToCoordinates implements
MapFunction, Tuple5> {
@Override
public Tuple5 map(
Tuple4 cellCount) throws Exception {
return new Tuple5<>(
GeoUtils.getGridCellCenterLon(cellCount.f0),
GeoUtils.getGridCellCenterLat(cellCount.f0),
cellCount.f1,
cellCount.f2,
cellCount.f3);
}
}
}