
com.databricks.labs.automl.executor.config.ModelDefaults.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of automatedml_2.11 Show documentation
Show all versions of automatedml_2.11 Show documentation
Databricks Labs AutoML toolkit
The newest version!
package com.databricks.labs.automl.executor.config
object ModelDefaults {
protected[config] def randomForestNumeric: Map[String, (Double, Double)] =
Map(
"numTrees" -> Tuple2(50.0, 1000.0),
"maxBins" -> Tuple2(10.0, 500.0),
"maxDepth" -> Tuple2(2.0, 20.0),
"minInfoGain" -> Tuple2(0.0, 1.0),
"subSamplingRate" -> Tuple2(0.5, 1.0)
)
protected[config] def randomForestString: Map[String, List[String]] = Map(
"impurity" -> List("gini", "entropy"),
"featureSubsetStrategy" -> List("auto")
)
protected[config] def treesNumeric: Map[String, (Double, Double)] = Map(
"maxBins" -> Tuple2(10.0, 500.0),
"maxDepth" -> Tuple2(2.0, 20.0),
"minInfoGain" -> Tuple2(0.0, 1.0),
"minInstancesPerNode" -> Tuple2(1.0, 50.0)
)
protected[config] def treesString: Map[String, List[String]] = Map(
"impurity" -> List("gini", "entropy")
)
protected[config] def xgBoostNumeric: Map[String, (Double, Double)] = Map(
"alpha" -> Tuple2(0.0, 1.0),
"eta" -> Tuple2(0.1, 0.5),
"gamma" -> Tuple2(0.0, 10.0),
"lambda" -> Tuple2(0.1, 10.0),
"maxDepth" -> Tuple2(3.0, 10.0),
"subSample" -> Tuple2(0.4, 0.6),
"minChildWeight" -> Tuple2(0.1, 10.0),
"numRound" -> Tuple2(5.0, 25.0),
"maxBins" -> Tuple2(25.0, 500.0),
"trainTestRatio" -> Tuple2(0.2, 0.8)
)
protected[config] def mlpcNumeric: Map[String, (Double, Double)] = Map(
"layers" -> Tuple2(1.0, 10.0),
"maxIter" -> Tuple2(10.0, 100.0),
"stepSize" -> Tuple2(0.01, 1.0),
"tolerance" -> Tuple2(1E-9, 1E-5),
"hiddenLayerSizeAdjust" -> Tuple2(0.0, 50.0)
)
protected[config] def mlpcString: Map[String, List[String]] = Map(
"solver" -> List("gd", "l-bfgs")
)
protected[config] def gbtNumeric: Map[String, (Double, Double)] = Map(
"maxBins" -> Tuple2(10.0, 500.0),
"maxIter" -> Tuple2(10.0, 100.0),
"maxDepth" -> Tuple2(2.0, 20.0),
"minInfoGain" -> Tuple2(0.0, 1.0),
"minInstancesPerNode" -> Tuple2(1.0, 50.0),
"stepSize" -> Tuple2(1E-4, 1.0)
)
protected[config] def gbtString: Map[String, List[String]] =
Map("impurity" -> List("gini", "entropy"), "lossType" -> List("logistic"))
protected[config] def linearRegressionNumeric: Map[String, (Double, Double)] =
Map(
"elasticNetParams" -> Tuple2(0.0, 1.0),
"maxIter" -> Tuple2(100.0, 10000.0),
"regParam" -> Tuple2(0.0, 1.0),
"tolerance" -> Tuple2(1E-9, 1E-5)
)
protected[config] def linearRegressionString: Map[String, List[String]] = Map(
"loss" -> List("squaredError", "huber")
)
protected[config] def logisticRegressionNumeric
: Map[String, (Double, Double)] = Map(
"elasticNetParams" -> Tuple2(0.0, 1.0),
"maxIter" -> Tuple2(100.0, 10000.0),
"regParam" -> Tuple2(0.0, 1.0),
"tolerance" -> Tuple2(1E-9, 1E-5)
)
protected[config] def svmNumeric: Map[String, (Double, Double)] = Map(
"maxIter" -> Tuple2(100.0, 10000.0),
"regParam" -> Tuple2(0.0, 1.0),
"tolerance" -> Tuple2(1E-9, 1E-5)
)
protected[config] def lightGBMnumeric: Map[String, (Double, Double)] = Map(
"baggingFraction" -> Tuple2(0.5, 1.0),
"baggingFreq" -> Tuple2(0.0, 1.0),
"featureFraction" -> Tuple2(0.6, 1.0),
"learningRate" -> Tuple2(1E-8, 1.0),
"maxBin" -> Tuple2(50, 1000),
"maxDepth" -> Tuple2(3.0, 20.0),
"minSumHessianInLeaf" -> Tuple2(1e-5, 50.0),
"numIterations" -> Tuple2(25.0, 250.0),
"numLeaves" -> Tuple2(10.0, 50.0),
"lambdaL1" -> Tuple2(0.0, 1.0),
"lambdaL2" -> Tuple2(0.0, 1.0),
"alpha" -> Tuple2(0.0, 1.0)
)
protected[config] def lightGBMString: Map[String, List[String]] = Map(
"boostingType" -> List("gbdt", "rf", "dart", "goss")
)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy