
com.databricks.labs.automl.model.tools.structures.ModelConfigStructures.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of automatedml_2.11 Show documentation
Show all versions of automatedml_2.11 Show documentation
Databricks Labs AutoML toolkit
The newest version!
package com.databricks.labs.automl.model.tools.structures
import com.databricks.labs.automl.params.MLPCConfig
case class NumericBoundaries(minimum: Double, maximum: Double)
case class NumericArrayCollection(selectedPayload: Array[Double],
remainingPayload: Array[Array[Double]])
case class StringSelectionReturn(selectedStringValue: String,
IndexCounterStatus: Int)
case class PermutationConfiguration(
modelType: String,
permutationTarget: Int,
numericBoundaries: Map[String, (Double, Double)],
stringBoundaries: Map[String, List[String]]
)
case class MLPCPermutationConfiguration(
permutationTarget: Int,
numericBoundaries: Map[String, (Double, Double)],
stringBoundaries: Map[String, List[String]],
inputFeatureSize: Int,
distinctClasses: Int
)
// RANDOM FOREST
case class RandomForestPermutationCollection(
numTreesArray: Array[Double],
maxBinsArray: Array[Double],
maxDepthArray: Array[Double],
minInfoGainArray: Array[Double],
subSamplingRateArray: Array[Double],
impurityArray: Array[String],
featureSubsetStrategyArray: Array[String]
)
case class RandomForestNumericArrays(numTreesArray: Array[Double],
maxBinsArray: Array[Double],
maxDepthArray: Array[Double],
minInfoGainArray: Array[Double],
subSamplingRateArray: Array[Double])
case class RandomForestModelRunReport(numTrees: Int,
impurity: String,
maxBins: Int,
maxDepth: Int,
minInfoGain: Double,
subSamplingRate: Double,
featureSubsetStrategy: String,
score: Double)
//DECISION TREES
case class TreesPermutationCollection(impurityArray: Array[String],
maxBinsArray: Array[Double],
maxDepthArray: Array[Double],
minInfoGainArray: Array[Double],
minInstancesPerNodeArray: Array[Double])
case class TreesNumericArrays(maxBinsArray: Array[Double],
maxDepthArray: Array[Double],
minInfoGainArray: Array[Double],
minInstancesPerNodeArray: Array[Double])
case class TreesModelRunReport(impurity: String,
maxBins: Int,
maxDepth: Int,
minInfoGain: Double,
minInstancesPerNode: Double,
score: Double)
//GRADIENT BOOSTED TREES
case class GBTPermutationCollection(impurityArray: Array[String],
lossTypeArray: Array[String],
maxBinsArray: Array[Double],
maxDepthArray: Array[Double],
maxIterArray: Array[Double],
minInfoGainArray: Array[Double],
minInstancesPerNodeArray: Array[Double],
stepSizeArray: Array[Double])
case class GBTNumericArrays(maxBinsArray: Array[Double],
maxDepthArray: Array[Double],
maxIterArray: Array[Double],
minInfoGainArray: Array[Double],
minInstancesPerNodeArray: Array[Double],
stepSizeArray: Array[Double])
case class GBTModelRunReport(impurity: String,
lossType: String,
maxBins: Int,
maxDepth: Int,
maxIter: Int,
minInfoGain: Double,
minInstancesPerNode: Double,
stepSize: Double,
score: Double)
//LINEAR REGRESSION
case class LinearRegressionPermutationCollection(
elasticNetParamsArray: Array[Double],
fitInterceptArray: Array[Boolean],
lossArray: Array[String],
maxIterArray: Array[Double],
regParamArray: Array[Double],
standardizationArray: Array[Boolean],
toleranceArray: Array[Double]
)
case class LinearRegressionNumericArrays(elasticNetParamsArray: Array[Double],
maxIterArray: Array[Double],
regParamArray: Array[Double],
toleranceArray: Array[Double])
case class LinearRegressionModelRunReport(elasticNetParams: Double,
fitIntercept: Boolean,
loss: String,
maxIter: Int,
regParam: Double,
standardization: Boolean,
tolerance: Double,
score: Double)
//LOGISTIC REGRESSION
case class LogisticRegressionPermutationCollection(
elasticNetParamsArray: Array[Double],
fitInterceptArray: Array[Boolean],
maxIterArray: Array[Double],
regParamArray: Array[Double],
standardizationArray: Array[Boolean],
toleranceArray: Array[Double]
)
case class LogisticRegressionNumericArrays(elasticNetParamsArray: Array[Double],
maxIterArray: Array[Double],
regParamArray: Array[Double],
toleranceArray: Array[Double])
case class LogisticRegressionModelRunReport(elasticNetParams: Double,
fitIntercept: Boolean,
maxIter: Int,
regParam: Double,
standardization: Boolean,
tolerance: Double,
score: Double)
//SVM
case class SVMPermutationCollection(fitInterceptArray: Array[Boolean],
maxIterArray: Array[Double],
regParamArray: Array[Double],
standardizationArray: Array[Boolean],
toleranceArray: Array[Double])
case class SVMNumericArrays(maxIterArray: Array[Double],
regParamArray: Array[Double],
toleranceArray: Array[Double])
case class SVMModelRunReport(fitIntercept: Boolean,
maxIter: Int,
regParam: Double,
standardization: Boolean,
tolerance: Double,
score: Double)
//MLPC
case class MLPCGenerator(layerCount: Int,
hiddenLayerSizeAdjust: Int,
maxIter: Int,
solver: String,
stepSize: Double,
tolerance: Double)
case class MLPCPermutationCollection(layerCountArray: Array[Int],
layersArray: Array[Array[Int]],
maxIterArray: Array[Double],
solverArray: Array[String],
stepSizeArray: Array[Double],
toleranceArray: Array[Double],
hiddenLayerSizeAdjustArray: Array[Int])
case class MLPCModelingConfig(layerCount: Int,
layers: Array[Int],
maxIter: Int,
solver: String,
stepSize: Double,
tolerance: Double,
hiddenLayerSizeAdjust: Int)
case class MLPCNumericArrays(layersArray: Array[Array[Int]],
maxIterArray: Array[Double],
stepSizeArray: Array[Double],
toleranceArray: Array[Double])
case class MLPCModelRunReport(layers: Int,
maxIter: Int,
solver: String,
stepSize: Double,
tolerance: Double,
hiddenLayerSizeAdjust: Int,
score: Double)
case class MLPCArrayCollection(selectedPayload: MLPCConfig,
remainingPayloads: MLPCNumericArrays)
//XGBOOST
case class XGBoostPermutationCollection(alphaArray: Array[Double],
etaArray: Array[Double],
gammaArray: Array[Double],
lambdaArray: Array[Double],
maxDepthArray: Array[Double],
subSampleArray: Array[Double],
minChildWeightArray: Array[Double],
numRoundArray: Array[Double],
maxBinsArray: Array[Double],
trainTestRatioArray: Array[Double])
case class XGBoostNumericArrays(alphaArray: Array[Double],
etaArray: Array[Double],
gammaArray: Array[Double],
lambdaArray: Array[Double],
maxDepthArray: Array[Double],
subSampleArray: Array[Double],
minChildWeightArray: Array[Double],
numRoundArray: Array[Double],
maxBinsArray: Array[Double],
trainTestRatioArray: Array[Double])
case class XGBoostModelRunReport(alpha: Double,
eta: Double,
gamma: Double,
lambda: Double,
maxDepth: Int,
subSample: Double,
minChildWeight: Double,
numRound: Int,
maxBins: Int,
trainTestRatio: Double,
score: Double)
//LightGBM
case class LightGBMPermutationCollection(
baggingFractionArray: Array[Double],
baggingFreqArray: Array[Double],
featureFractionArray: Array[Double],
learningRateArray: Array[Double],
maxBinArray: Array[Double],
maxDepthArray: Array[Double],
minSumHessianInLeafArray: Array[Double],
numIterationsArray: Array[Double],
numLeavesArray: Array[Double],
boostFromAverageArray: Array[Boolean],
lambdaL1Array: Array[Double],
lambdaL2Array: Array[Double],
alphaArray: Array[Double],
boostingTypeArray: Array[String]
)
case class LightGBMNumericArrays(baggingFractionArray: Array[Double],
baggingFreqArray: Array[Double],
featureFractionArray: Array[Double],
learningRateArray: Array[Double],
maxBinArray: Array[Double],
maxDepthArray: Array[Double],
minSumHessianInLeafArray: Array[Double],
numIterationsArray: Array[Double],
numLeavesArray: Array[Double],
lambdaL1Array: Array[Double],
lambdaL2Array: Array[Double],
alphaArray: Array[Double])
case class LightGBMModelRunReport(baggingFraction: Double,
baggingFreq: Int,
featureFraction: Double,
learningRate: Double,
maxBin: Int,
maxDepth: Int,
minSumHessianInLeaf: Double,
numIterations: Int,
numLeaves: Int,
boostFromAverage: Boolean,
lambdaL1: Double,
lambdaL2: Double,
alpha: Double,
boostingType: String,
score: Double)
© 2015 - 2025 Weber Informatics LLC | Privacy Policy