
com.databricks.labs.automl.pipeline.SQLWrapperTransformer.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of automatedml_2.11 Show documentation
Show all versions of automatedml_2.11 Show documentation
Databricks Labs AutoML toolkit
The newest version!
package com.databricks.labs.automl.pipeline
import com.databricks.labs.automl.utils.AutoMlPipelineMlFlowUtils
import org.apache.spark.ml.feature.SQLTransformer
import org.apache.spark.ml.param.{Param, ParamMap}
import org.apache.spark.ml.util.{DefaultParamsReadable, DefaultParamsWritable, Identifiable}
import org.apache.spark.sql.{DataFrame, Dataset}
import org.apache.spark.sql.types.StructType
/**
* @author Jas Bali
* This transformer wraps [[SQLTransformer]] and is useful to add logging capability from [[AbstractTransformer]]
*/
class SQLWrapperTransformer(override val uid: String)
extends AbstractTransformer
with DefaultParamsWritable {
final val statement = new Param[String](this, "statement", "statement")
def setStatement(value: String): this.type = set(statement, value)
def getStatement: String = $(statement)
def this() = {
this(Identifiable.randomUID("SQLWrapperTransformer"))
setAutomlInternalId(AutoMlPipelineMlFlowUtils.AUTOML_INTERNAL_ID_COL)
setDebugEnabled(false)
}
override def transformInternal(dataset: Dataset[_]): DataFrame = {
transformSchemaInternal(dataset.schema)
new SQLTransformer().setStatement(getStatement).transform(dataset)
}
override def transformSchemaInternal(schema: StructType): StructType = {
new SQLTransformer().setStatement(getStatement).transformSchema(schema)
}
override def copy(extra: ParamMap): SQLWrapperTransformer = defaultCopy(extra)
}
object SQLWrapperTransformer extends DefaultParamsReadable[SQLWrapperTransformer] {
override def load(path: String): SQLWrapperTransformer = super.load(path)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy