
com.databricks.labs.automl.pipeline.inference.PipelineModelInference.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of automatedml_2.11 Show documentation
Show all versions of automatedml_2.11 Show documentation
Databricks Labs AutoML toolkit
The newest version!
package com.databricks.labs.automl.pipeline.inference
import com.databricks.labs.automl.executor.config.LoggingConfig
import com.databricks.labs.automl.params.{MLFlowConfig, MainConfig}
import com.databricks.labs.automl.utils.{AutoMlPipelineMlFlowUtils, InitDbUtils}
import org.apache.spark.ml.PipelineModel
/**
* @author Jas Bali
* @since 0.6.1
* Utility functions for running inference directly against an MlFlow Run ID
*/
object PipelineModelInference {
/**
*
* @param runId String of MLFlow runId to be used for Inference
* @param loggingConfig Deprecated -- logging config for older pipelines
* @return
*/
@deprecated("Only for legacy pipelines without main config tracked by MLFlow. Use " +
"signature (runId: String, mainConfig: mainConfig: MainConfig) or " +
"(runId: String)", "0.7.1")
def getPipelineModelByMlFlowRunId(runId: String, loggingConfig: LoggingConfig): PipelineModel = {
PipelineModel.load(AutoMlPipelineMlFlowUtils.getPipelinePathByRunId(runId, loggingConfig=Some(loggingConfig)))
}
/***
* String of MLFlow runId to be used for Inference
* @param runId
* @param mainConfig
* @return
*/
def getPipelineModelByMlFlowRunId(runId: String, mainConfig: MainConfig): PipelineModel = {
PipelineModel.load(AutoMlPipelineMlFlowUtils.getPipelinePathByRunId(runId, mainConfig=Some(mainConfig)))
}
/**
* String of MLFlow runId to be used for Inference
* @param runId
* @return
*/
def getPipelineModelByMlFlowRunId(runId: String): PipelineModel = {
PipelineModel.load(AutoMlPipelineMlFlowUtils.getPipelinePathByRunId(runId, None))
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy