All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.sql.DataFrameWriter.scala Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql

import java.util.{Locale, Properties}

import scala.jdk.CollectionConverters._

import org.apache.spark.annotation.Stable
import org.apache.spark.connect.proto
import org.apache.spark.sql.catalyst.util.CaseInsensitiveMap

/**
 * Interface used to write a [[Dataset]] to external storage systems (e.g. file systems, key-value
 * stores, etc). Use `Dataset.write` to access this.
 *
 * @since 3.4.0
 */
@Stable
final class DataFrameWriter[T] private[sql] (ds: Dataset[T]) {

  /**
   * Specifies the behavior when data or table already exists. Options include: 
    *
  • `SaveMode.Overwrite`: overwrite the existing data.
  • `SaveMode.Append`: append the * data.
  • `SaveMode.Ignore`: ignore the operation (i.e. no-op).
  • *
  • `SaveMode.ErrorIfExists`: throw an exception at runtime.

The default * option is `ErrorIfExists`. * * @since 3.4.0 */ def mode(saveMode: SaveMode): DataFrameWriter[T] = { this.mode = saveMode this } /** * Specifies the behavior when data or table already exists. Options include:

    *
  • `overwrite`: overwrite the existing data.
  • `append`: append the data.
  • *
  • `ignore`: ignore the operation (i.e. no-op).
  • `error` or `errorifexists`: default * option, throw an exception at runtime.
* * @since 3.4.0 */ def mode(saveMode: String): DataFrameWriter[T] = { saveMode.toLowerCase(Locale.ROOT) match { case "overwrite" => mode(SaveMode.Overwrite) case "append" => mode(SaveMode.Append) case "ignore" => mode(SaveMode.Ignore) case "error" | "errorifexists" | "default" => mode(SaveMode.ErrorIfExists) case _ => throw new IllegalArgumentException(s"Unknown save mode: $saveMode. Accepted " + "save modes are 'overwrite', 'append', 'ignore', 'error', 'errorifexists', 'default'.") } } /** * Specifies the underlying output data source. Built-in options include "parquet", "json", etc. * * @since 3.4.0 */ def format(source: String): DataFrameWriter[T] = { this.source = Some(source) this } /** * Adds an output option for the underlying data source. * * All options are maintained in a case-insensitive way in terms of key names. If a new option * has the same key case-insensitively, it will override the existing option. * * @since 3.4.0 */ def option(key: String, value: String): DataFrameWriter[T] = { this.extraOptions = this.extraOptions + (key -> value) this } /** * Adds an output option for the underlying data source. * * All options are maintained in a case-insensitive way in terms of key names. If a new option * has the same key case-insensitively, it will override the existing option. * * @since 3.4.0 */ def option(key: String, value: Boolean): DataFrameWriter[T] = option(key, value.toString) /** * Adds an output option for the underlying data source. * * All options are maintained in a case-insensitive way in terms of key names. If a new option * has the same key case-insensitively, it will override the existing option. * * @since 3.4.0 */ def option(key: String, value: Long): DataFrameWriter[T] = option(key, value.toString) /** * Adds an output option for the underlying data source. * * All options are maintained in a case-insensitive way in terms of key names. If a new option * has the same key case-insensitively, it will override the existing option. * * @since 3.4.0 */ def option(key: String, value: Double): DataFrameWriter[T] = option(key, value.toString) /** * (Scala-specific) Adds output options for the underlying data source. * * All options are maintained in a case-insensitive way in terms of key names. If a new option * has the same key case-insensitively, it will override the existing option. * * @since 3.4.0 */ def options(options: scala.collection.Map[String, String]): DataFrameWriter[T] = { this.extraOptions ++= options this } /** * Adds output options for the underlying data source. * * All options are maintained in a case-insensitive way in terms of key names. If a new option * has the same key case-insensitively, it will override the existing option. * * @since 3.4.0 */ def options(options: java.util.Map[String, String]): DataFrameWriter[T] = { this.options(options.asScala) this } /** * Partitions the output by the given columns on the file system. If specified, the output is * laid out on the file system similar to Hive's partitioning scheme. As an example, when we * partition a dataset by year and then month, the directory layout would look like:
    *
  • year=2016/month=01/
  • year=2016/month=02/
* * Partitioning is one of the most widely used techniques to optimize physical data layout. It * provides a coarse-grained index for skipping unnecessary data reads when queries have * predicates on the partitioned columns. In order for partitioning to work well, the number of * distinct values in each column should typically be less than tens of thousands. * * This is applicable for all file-based data sources (e.g. Parquet, JSON) starting with Spark * 2.1.0. * * @since 3.4.0 */ @scala.annotation.varargs def partitionBy(colNames: String*): DataFrameWriter[T] = { this.partitioningColumns = Option(colNames) this } /** * Buckets the output by the given columns. If specified, the output is laid out on the file * system similar to Hive's bucketing scheme, but with a different bucket hash function and is * not compatible with Hive's bucketing. * * This is applicable for all file-based data sources (e.g. Parquet, JSON) starting with Spark * 2.1.0. * * @since 3.4.0 */ @scala.annotation.varargs def bucketBy(numBuckets: Int, colName: String, colNames: String*): DataFrameWriter[T] = { require(numBuckets > 0, "The numBuckets should be > 0.") this.numBuckets = Option(numBuckets) this.bucketColumnNames = Option(colName +: colNames) this } /** * Sorts the output in each bucket by the given columns. * * This is applicable for all file-based data sources (e.g. Parquet, JSON) starting with Spark * 2.1.0. * * @since 3.4.0 */ @scala.annotation.varargs def sortBy(colName: String, colNames: String*): DataFrameWriter[T] = { this.sortColumnNames = Option(colName +: colNames) this } /** * Clusters the output by the given columns on the file system. The rows with matching values in * the specified clustering columns will be consolidated within the same file. * * For instance, if you cluster a dataset by date, the data sharing the same date will be stored * together in a file. This arrangement improves query efficiency when you apply selective * filters to these clustering columns, thanks to data skipping. * * @since 4.0.0 */ @scala.annotation.varargs def clusterBy(colName: String, colNames: String*): DataFrameWriter[T] = { this.clusteringColumns = Option(colName +: colNames) this } /** * Saves the content of the `DataFrame` at the specified path. * * @since 3.4.0 */ def save(path: String): Unit = { saveInternal(Some(path)) } /** * Saves the content of the `DataFrame` as the specified table. * * @since 3.4.0 */ def save(): Unit = saveInternal(None) private def saveInternal(path: Option[String]): Unit = { executeWriteOperation(builder => path.foreach(builder.setPath)) } private def executeWriteOperation(f: proto.WriteOperation.Builder => Unit): Unit = { val builder = proto.WriteOperation.newBuilder() builder.setInput(ds.plan.getRoot) // Set path or table f(builder) // Cannot both be set require(!(builder.hasPath && builder.hasTable)) builder.setMode(mode match { case SaveMode.Append => proto.WriteOperation.SaveMode.SAVE_MODE_APPEND case SaveMode.Overwrite => proto.WriteOperation.SaveMode.SAVE_MODE_OVERWRITE case SaveMode.Ignore => proto.WriteOperation.SaveMode.SAVE_MODE_IGNORE case SaveMode.ErrorIfExists => proto.WriteOperation.SaveMode.SAVE_MODE_ERROR_IF_EXISTS }) source.foreach(builder.setSource) sortColumnNames.foreach(names => builder.addAllSortColumnNames(names.asJava)) partitioningColumns.foreach(cols => builder.addAllPartitioningColumns(cols.asJava)) clusteringColumns.foreach(cols => builder.addAllClusteringColumns(cols.asJava)) numBuckets.foreach(n => { val bucketBuilder = proto.WriteOperation.BucketBy.newBuilder() bucketBuilder.setNumBuckets(n) bucketColumnNames.foreach(names => bucketBuilder.addAllBucketColumnNames(names.asJava)) builder.setBucketBy(bucketBuilder) }) extraOptions.foreach { case (k, v) => builder.putOptions(k, v) } ds.sparkSession.execute(proto.Command.newBuilder().setWriteOperation(builder).build()) } /** * Inserts the content of the `DataFrame` to the specified table. It requires that the schema of * the `DataFrame` is the same as the schema of the table. * * @note * Unlike `saveAsTable`, `insertInto` ignores the column names and just uses position-based * resolution. For example: * * @note * SaveMode.ErrorIfExists and SaveMode.Ignore behave as SaveMode.Append in `insertInto` as * `insertInto` is not a table creating operation. * * {{{ * scala> Seq((1, 2)).toDF("i", "j").write.mode("overwrite").saveAsTable("t1") * scala> Seq((3, 4)).toDF("j", "i").write.insertInto("t1") * scala> Seq((5, 6)).toDF("a", "b").write.insertInto("t1") * scala> sql("select * from t1").show * +---+---+ * | i| j| * +---+---+ * | 5| 6| * | 3| 4| * | 1| 2| * +---+---+ * }}} * * Because it inserts data to an existing table, format or options will be ignored. * * @since 3.4.0 */ def insertInto(tableName: String): Unit = { executeWriteOperation(builder => { builder.setTable( proto.WriteOperation.SaveTable .newBuilder() .setTableName(tableName) .setSaveMethod( proto.WriteOperation.SaveTable.TableSaveMethod.TABLE_SAVE_METHOD_INSERT_INTO)) }) } /** * Saves the content of the `DataFrame` as the specified table. * * In the case the table already exists, behavior of this function depends on the save mode, * specified by the `mode` function (default to throwing an exception). When `mode` is * `Overwrite`, the schema of the `DataFrame` does not need to be the same as that of the * existing table. * * When `mode` is `Append`, if there is an existing table, we will use the format and options of * the existing table. The column order in the schema of the `DataFrame` doesn't need to be same * as that of the existing table. Unlike `insertInto`, `saveAsTable` will use the column names * to find the correct column positions. For example: * * {{{ * scala> Seq((1, 2)).toDF("i", "j").write.mode("overwrite").saveAsTable("t1") * scala> Seq((3, 4)).toDF("j", "i").write.mode("append").saveAsTable("t1") * scala> sql("select * from t1").show * +---+---+ * | i| j| * +---+---+ * | 1| 2| * | 4| 3| * +---+---+ * }}} * * In this method, save mode is used to determine the behavior if the data source table exists * in Spark catalog. We will always overwrite the underlying data of data source (e.g. a table * in JDBC data source) if the table doesn't exist in Spark catalog, and will always append to * the underlying data of data source if the table already exists. * * When the DataFrame is created from a non-partitioned `HadoopFsRelation` with a single input * path, and the data source provider can be mapped to an existing Hive builtin SerDe (i.e. ORC * and Parquet), the table is persisted in a Hive compatible format, which means other systems * like Hive will be able to read this table. Otherwise, the table is persisted in a Spark SQL * specific format. * * @since 3.4.0 */ def saveAsTable(tableName: String): Unit = { executeWriteOperation(builder => { builder.setTable( proto.WriteOperation.SaveTable .newBuilder() .setTableName(tableName) .setSaveMethod( proto.WriteOperation.SaveTable.TableSaveMethod.TABLE_SAVE_METHOD_SAVE_AS_TABLE)) }) } /** * Saves the content of the `DataFrame` to an external database table via JDBC. In the case the * table already exists in the external database, behavior of this function depends on the save * mode, specified by the `mode` function (default to throwing an exception). * * Don't create too many partitions in parallel on a large cluster; otherwise Spark might crash * your external database systems. * * JDBC-specific option and parameter documentation for storing tables via JDBC in * Data Source Option in the version you use. * * @param table * Name of the table in the external database. * @param connectionProperties * JDBC database connection arguments, a list of arbitrary string tag/value. Normally at least * a "user" and "password" property should be included. "batchsize" can be used to control the * number of rows per insert. "isolationLevel" can be one of "NONE", "READ_COMMITTED", * "READ_UNCOMMITTED", "REPEATABLE_READ", or "SERIALIZABLE", corresponding to standard * transaction isolation levels defined by JDBC's Connection object, with default of * "READ_UNCOMMITTED". * @since 3.4.0 */ def jdbc(url: String, table: String, connectionProperties: Properties): Unit = { // connectionProperties should override settings in extraOptions. this.extraOptions ++= connectionProperties.asScala // explicit url and dbtable should override all this.extraOptions ++= Seq("url" -> url, "dbtable" -> table) format("jdbc").save() } /** * Saves the content of the `DataFrame` in JSON format ( JSON * Lines text format or newline-delimited JSON) at the specified path. This is equivalent * to: * {{{ * format("json").save(path) * }}} * * You can find the JSON-specific options for writing JSON files in * Data Source Option in the version you use. * * @since 3.4.0 */ def json(path: String): Unit = { format("json").save(path) } /** * Saves the content of the `DataFrame` in Parquet format at the specified path. This is * equivalent to: * {{{ * format("parquet").save(path) * }}} * * Parquet-specific option(s) for writing Parquet files can be found in Data * Source Option in the version you use. * * @since 3.4.0 */ def parquet(path: String): Unit = { format("parquet").save(path) } /** * Saves the content of the `DataFrame` in ORC format at the specified path. This is equivalent * to: * {{{ * format("orc").save(path) * }}} * * ORC-specific option(s) for writing ORC files can be found in Data * Source Option in the version you use. * * @since 3.4.0 */ def orc(path: String): Unit = { format("orc").save(path) } /** * Saves the content of the `DataFrame` in a text file at the specified path. The DataFrame must * have only one column that is of string type. Each row becomes a new line in the output file. * For example: * {{{ * // Scala: * df.write.text("/path/to/output") * * // Java: * df.write().text("/path/to/output") * }}} * The text files will be encoded as UTF-8. * * You can find the text-specific options for writing text files in * Data Source Option in the version you use. * * @since 3.4.0 */ def text(path: String): Unit = { format("text").save(path) } /** * Saves the content of the `DataFrame` in CSV format at the specified path. This is equivalent * to: * {{{ * format("csv").save(path) * }}} * * You can find the CSV-specific options for writing CSV files in * Data Source Option in the version you use. * * @since 3.4.0 */ def csv(path: String): Unit = { format("csv").save(path) } /** * Saves the content of the `DataFrame` in XML format at the specified path. This is equivalent * to: * {{{ * format("xml").save(path) * }}} * * Note that writing a XML file from `DataFrame` having a field `ArrayType` with its element as * `ArrayType` would have an additional nested field for the element. For example, the * `DataFrame` having a field below, * * {@code fieldA [[data1], [data2]]} * * would produce a XML file below. { @code data1 * data2 } * * Namely, roundtrip in writing and reading can end up in different schema structure. * * You can find the XML-specific options for writing XML files in * Data Source Option in the version you use. * * @since 4.0.0 */ def xml(path: String): Unit = { format("xml").save(path) } /////////////////////////////////////////////////////////////////////////////////////// // Builder pattern config options /////////////////////////////////////////////////////////////////////////////////////// private var source: Option[String] = None private var mode: SaveMode = SaveMode.ErrorIfExists private var extraOptions = CaseInsensitiveMap[String](Map.empty) private var partitioningColumns: Option[Seq[String]] = None private var bucketColumnNames: Option[Seq[String]] = None private var numBuckets: Option[Int] = None private var clusteringColumns: Option[Seq[String]] = None private var sortColumnNames: Option[Seq[String]] = None }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy