All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.sql.streaming.progress.scala Maven / Gradle / Ivy

Go to download

Develop locally and connect IDEs, notebook servers and running applications to Databricks clusters.

There is a newer version: 16.0.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.streaming

import java.{util => ju}
import java.lang.{Long => JLong}
import java.util.UUID

import scala.jdk.CollectionConverters._
import scala.util.control.NonFatal

import com.fasterxml.jackson.databind.{DeserializationFeature, ObjectMapper}
import com.fasterxml.jackson.databind.annotation.JsonDeserialize
import com.fasterxml.jackson.module.scala.{ClassTagExtensions, DefaultScalaModule}
import org.json4s._
import org.json4s.JsonAST.JValue
import org.json4s.JsonDSL._
import org.json4s.jackson.JsonMethods._

import org.apache.spark.annotation.Evolving
import org.apache.spark.sql.Row
import org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema
import org.apache.spark.sql.streaming.SafeJsonSerializer.{safeDoubleToJValue, safeMapToJValue}
import org.apache.spark.sql.streaming.SinkProgress.DEFAULT_NUM_OUTPUT_ROWS

/**
 * Information about updates made to stateful operators in a [[StreamingQuery]] during a trigger.
 */
@Evolving
class StateOperatorProgress private[spark] (
    val operatorName: String,
    val numRowsTotal: Long,
    val numRowsUpdated: Long,
    val allUpdatesTimeMs: Long,
    val numRowsRemoved: Long,
    val allRemovalsTimeMs: Long,
    val commitTimeMs: Long,
    val memoryUsedBytes: Long,
    val numRowsDroppedByWatermark: Long,
    val numShufflePartitions: Long,
    val numStateStoreInstances: Long,
    val customMetrics: ju.Map[String, JLong] = new ju.HashMap())
    extends Serializable {

  /** The compact JSON representation of this progress. */
  def json: String = compact(render(jsonValue))

  /** The pretty (i.e. indented) JSON representation of this progress. */
  def prettyJson: String = pretty(render(jsonValue))

  private[sql] def copy(
      newNumRowsUpdated: Long,
      newNumRowsDroppedByWatermark: Long): StateOperatorProgress =
    new StateOperatorProgress(
      operatorName = operatorName,
      numRowsTotal = numRowsTotal,
      numRowsUpdated = newNumRowsUpdated,
      allUpdatesTimeMs = allUpdatesTimeMs,
      numRowsRemoved = numRowsRemoved,
      allRemovalsTimeMs = allRemovalsTimeMs,
      commitTimeMs = commitTimeMs,
      memoryUsedBytes = memoryUsedBytes,
      numRowsDroppedByWatermark = newNumRowsDroppedByWatermark,
      numShufflePartitions = numShufflePartitions,
      numStateStoreInstances = numStateStoreInstances,
      customMetrics = customMetrics)

  private[sql] def jsonValue: JValue = {
    ("operatorName" -> JString(operatorName)) ~
      ("numRowsTotal" -> JInt(numRowsTotal)) ~
      ("numRowsUpdated" -> JInt(numRowsUpdated)) ~
      ("allUpdatesTimeMs" -> JInt(allUpdatesTimeMs)) ~
      ("numRowsRemoved" -> JInt(numRowsRemoved)) ~
      ("allRemovalsTimeMs" -> JInt(allRemovalsTimeMs)) ~
      ("commitTimeMs" -> JInt(commitTimeMs)) ~
      ("memoryUsedBytes" -> JInt(memoryUsedBytes)) ~
      ("numRowsDroppedByWatermark" -> JInt(numRowsDroppedByWatermark)) ~
      ("numShufflePartitions" -> JInt(numShufflePartitions)) ~
      ("numStateStoreInstances" -> JInt(numStateStoreInstances)) ~
      ("customMetrics" -> {
        if (!customMetrics.isEmpty) {
          val keys = customMetrics.keySet.asScala.toSeq.sorted
          keys.map { k => k -> JInt(customMetrics.get(k).toLong): JObject }.reduce(_ ~ _)
        } else {
          JNothing
        }
      })
  }

  override def toString: String = prettyJson
}

/**
 * Information about progress made in the execution of a [[StreamingQuery]] during a trigger. Each
 * event relates to processing done for a single trigger of the streaming query. Events are
 * emitted even when no new data is available to be processed.
 *
 * @param id
 *   A unique query id that persists across restarts. See `StreamingQuery.id()`.
 * @param runId
 *   A query id that is unique for every start/restart. See `StreamingQuery.runId()`.
 * @param name
 *   User-specified name of the query, null if not specified.
 * @param timestamp
 *   Beginning time of the trigger in ISO8601 format, i.e. UTC timestamps.
 * @param batchId
 *   A unique id for the current batch of data being processed. Note that in the case of retries
 *   after a failure a given batchId my be executed more than once. Similarly, when there is no
 *   data to be processed, the batchId will not be incremented.
 * @param batchDuration
 *   The process duration of each batch.
 * @param durationMs
 *   The amount of time taken to perform various operations in milliseconds.
 * @param eventTime
 *   Statistics of event time seen in this batch. It may contain the following keys:
 *   {{{
 *                   "max" -> "2016-12-05T20:54:20.827Z"  // maximum event time seen in this trigger
 *                   "min" -> "2016-12-05T20:54:20.827Z"  // minimum event time seen in this trigger
 *                   "avg" -> "2016-12-05T20:54:20.827Z"  // average event time seen in this trigger
 *                   "watermark" -> "2016-12-05T20:54:20.827Z"  // watermark used in this trigger
 *   }}}
 *   All timestamps are in ISO8601 format, i.e. UTC timestamps.
 * @param stateOperators
 *   Information about operators in the query that store state.
 * @param sources
 *   detailed statistics on data being read from each of the streaming sources.
 * @since 3.5.0
 */
@Evolving
class StreamingQueryProgress private[spark] (
    val id: UUID,
    val runId: UUID,
    val name: String,
    val timestamp: String,
    val batchId: Long,
    val batchDuration: Long,
    val durationMs: ju.Map[String, JLong],
    val eventTime: ju.Map[String, String],
    val stateOperators: Array[StateOperatorProgress],
    val sources: Array[SourceProgress],
    val sink: SinkProgress,
    @JsonDeserialize(contentAs = classOf[GenericRowWithSchema])
    val observedMetrics: ju.Map[String, Row])
    extends Serializable {

  /** The aggregate (across all sources) number of records processed in a trigger. */
  def numInputRows: Long = sources.map(_.numInputRows).sum

  /** The aggregate (across all sources) rate of data arriving. */
  def inputRowsPerSecond: Double = sources.map(_.inputRowsPerSecond).sum

  /** The aggregate (across all sources) rate at which Spark is processing data. */
  def processedRowsPerSecond: Double = sources.map(_.processedRowsPerSecond).sum

  /** The compact JSON representation of this progress. */
  def json: String = compact(render(jsonValue))

  /** The pretty (i.e. indented) JSON representation of this progress. */
  def prettyJson: String = pretty(render(jsonValue))

  override def toString: String = prettyJson

  private[sql] def jsonValue: JValue = {
    ("id" -> JString(id.toString)) ~
      ("runId" -> JString(runId.toString)) ~
      ("name" -> JString(name)) ~
      ("timestamp" -> JString(timestamp)) ~
      ("batchId" -> JInt(batchId)) ~
      ("batchDuration" -> JInt(batchDuration)) ~
      ("numInputRows" -> JInt(numInputRows)) ~
      ("inputRowsPerSecond" -> safeDoubleToJValue(inputRowsPerSecond)) ~
      ("processedRowsPerSecond" -> safeDoubleToJValue(processedRowsPerSecond)) ~
      ("durationMs" -> safeMapToJValue[JLong](durationMs, v => JInt(v.toLong))) ~
      ("eventTime" -> safeMapToJValue[String](eventTime, s => JString(s))) ~
      ("stateOperators" -> JArray(stateOperators.map(_.jsonValue).toList)) ~
      ("sources" -> JArray(sources.map(_.jsonValue).toList)) ~
      ("sink" -> sink.jsonValue) ~
      ("observedMetrics" -> safeMapToJValue[Row](observedMetrics, row => row.jsonValue))
  }
}

private[spark] object StreamingQueryProgress {
  private val mapper = {
    val ret = new ObjectMapper() with ClassTagExtensions
    ret.registerModule(DefaultScalaModule)
    ret.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false)
    ret
  }

  private[spark] def jsonString(progress: StreamingQueryProgress): String =
    mapper.writeValueAsString(progress)

  private[spark] def fromJson(json: String): StreamingQueryProgress =
    mapper.readValue[StreamingQueryProgress](json)
}

/**
 * Information about progress made for a source in the execution of a [[StreamingQuery]] during a
 * trigger. See [[StreamingQueryProgress]] for more information.
 *
 * @param description
 *   Description of the source.
 * @param startOffset
 *   The starting offset for data being read.
 * @param endOffset
 *   The ending offset for data being read.
 * @param latestOffset
 *   The latest offset from this source.
 * @param numInputRows
 *   The number of records read from this source.
 * @param inputRowsPerSecond
 *   The rate at which data is arriving from this source.
 * @param processedRowsPerSecond
 *   The rate at which data from this source is being processed by Spark.
 * @since 3.5.0
 */
@Evolving
class SourceProgress protected[spark] (
    val description: String,
    val startOffset: String,
    val endOffset: String,
    val latestOffset: String,
    val numInputRows: Long,
    val inputRowsPerSecond: Double,
    val processedRowsPerSecond: Double,
    val metrics: ju.Map[String, String] = Map[String, String]().asJava)
    extends Serializable {

  /** The compact JSON representation of this progress. */
  def json: String = compact(render(jsonValue))

  /** The pretty (i.e. indented) JSON representation of this progress. */
  def prettyJson: String = pretty(render(jsonValue))

  override def toString: String = prettyJson

  private[sql] def jsonValue: JValue = {
    ("description" -> JString(description)) ~
      ("startOffset" -> tryParse(startOffset)) ~
      ("endOffset" -> tryParse(endOffset)) ~
      ("latestOffset" -> tryParse(latestOffset)) ~
      ("numInputRows" -> JInt(numInputRows)) ~
      ("inputRowsPerSecond" -> safeDoubleToJValue(inputRowsPerSecond)) ~
      ("processedRowsPerSecond" -> safeDoubleToJValue(processedRowsPerSecond)) ~
      ("metrics" -> safeMapToJValue[String](metrics, s => JString(s)))
  }

  private def tryParse(json: String) = try {
    parse(json)
  } catch {
    case NonFatal(e) => JString(json)
  }
}

/**
 * Information about progress made for a sink in the execution of a [[StreamingQuery]] during a
 * trigger. See [[StreamingQueryProgress]] for more information.
 *
 * @param description
 *   Description of the source corresponding to this status.
 * @param numOutputRows
 *   Number of rows written to the sink or -1 for Continuous Mode (temporarily) or Sink V1 (until
 *   decommissioned).
 * @since 3.5.0
 */
@Evolving
class SinkProgress protected[spark] (
    val description: String,
    val numOutputRows: Long,
    val metrics: ju.Map[String, String] = Map[String, String]().asJava)
    extends Serializable {

  /** SinkProgress without custom metrics. */
  protected[sql] def this(description: String) = {
    this(description, DEFAULT_NUM_OUTPUT_ROWS)
  }

  /** The compact JSON representation of this progress. */
  def json: String = compact(render(jsonValue))

  /** The pretty (i.e. indented) JSON representation of this progress. */
  def prettyJson: String = pretty(render(jsonValue))

  override def toString: String = prettyJson

  private[sql] def jsonValue: JValue = {
    ("description" -> JString(description)) ~
      ("numOutputRows" -> JInt(numOutputRows)) ~
      ("metrics" -> safeMapToJValue[String](metrics, s => JString(s)))
  }
}

private[sql] object SinkProgress {
  val DEFAULT_NUM_OUTPUT_ROWS: Long = -1L

  def apply(
      description: String,
      numOutputRows: Option[Long],
      metrics: ju.Map[String, String] = Map[String, String]().asJava): SinkProgress =
    new SinkProgress(description, numOutputRows.getOrElse(DEFAULT_NUM_OUTPUT_ROWS), metrics)
}

private object SafeJsonSerializer {
  def safeDoubleToJValue(value: Double): JValue = {
    if (value.isNaN || value.isInfinity) JNothing else JDouble(value)
  }

  /** Convert map to JValue while handling empty maps. Also, this sorts the keys. */
  def safeMapToJValue[T](map: ju.Map[String, T], valueToJValue: T => JValue): JValue = {
    if (map == null || map.isEmpty) return JNothing
    val keys = map.asScala.keySet.toSeq.sorted
    keys.map { k => k -> valueToJValue(map.get(k)): JObject }.reduce(_ ~ _)
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy