org.apache.spark.sql.streaming.progress.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of databricks-connect Show documentation
Show all versions of databricks-connect Show documentation
Develop locally and connect IDEs, notebook servers and running applications to Databricks clusters.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.streaming
import java.{util => ju}
import java.lang.{Long => JLong}
import java.util.UUID
import scala.jdk.CollectionConverters._
import scala.util.control.NonFatal
import com.fasterxml.jackson.databind.{DeserializationFeature, ObjectMapper}
import com.fasterxml.jackson.databind.annotation.JsonDeserialize
import com.fasterxml.jackson.module.scala.{ClassTagExtensions, DefaultScalaModule}
import org.json4s._
import org.json4s.JsonAST.JValue
import org.json4s.JsonDSL._
import org.json4s.jackson.JsonMethods._
import org.apache.spark.annotation.Evolving
import org.apache.spark.sql.Row
import org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema
import org.apache.spark.sql.streaming.SafeJsonSerializer.{safeDoubleToJValue, safeMapToJValue}
import org.apache.spark.sql.streaming.SinkProgress.DEFAULT_NUM_OUTPUT_ROWS
/**
* Information about updates made to stateful operators in a [[StreamingQuery]] during a trigger.
*/
@Evolving
class StateOperatorProgress private[spark] (
val operatorName: String,
val numRowsTotal: Long,
val numRowsUpdated: Long,
val allUpdatesTimeMs: Long,
val numRowsRemoved: Long,
val allRemovalsTimeMs: Long,
val commitTimeMs: Long,
val memoryUsedBytes: Long,
val numRowsDroppedByWatermark: Long,
val numShufflePartitions: Long,
val numStateStoreInstances: Long,
val customMetrics: ju.Map[String, JLong] = new ju.HashMap())
extends Serializable {
/** The compact JSON representation of this progress. */
def json: String = compact(render(jsonValue))
/** The pretty (i.e. indented) JSON representation of this progress. */
def prettyJson: String = pretty(render(jsonValue))
private[sql] def copy(
newNumRowsUpdated: Long,
newNumRowsDroppedByWatermark: Long): StateOperatorProgress =
new StateOperatorProgress(
operatorName = operatorName,
numRowsTotal = numRowsTotal,
numRowsUpdated = newNumRowsUpdated,
allUpdatesTimeMs = allUpdatesTimeMs,
numRowsRemoved = numRowsRemoved,
allRemovalsTimeMs = allRemovalsTimeMs,
commitTimeMs = commitTimeMs,
memoryUsedBytes = memoryUsedBytes,
numRowsDroppedByWatermark = newNumRowsDroppedByWatermark,
numShufflePartitions = numShufflePartitions,
numStateStoreInstances = numStateStoreInstances,
customMetrics = customMetrics)
private[sql] def jsonValue: JValue = {
("operatorName" -> JString(operatorName)) ~
("numRowsTotal" -> JInt(numRowsTotal)) ~
("numRowsUpdated" -> JInt(numRowsUpdated)) ~
("allUpdatesTimeMs" -> JInt(allUpdatesTimeMs)) ~
("numRowsRemoved" -> JInt(numRowsRemoved)) ~
("allRemovalsTimeMs" -> JInt(allRemovalsTimeMs)) ~
("commitTimeMs" -> JInt(commitTimeMs)) ~
("memoryUsedBytes" -> JInt(memoryUsedBytes)) ~
("numRowsDroppedByWatermark" -> JInt(numRowsDroppedByWatermark)) ~
("numShufflePartitions" -> JInt(numShufflePartitions)) ~
("numStateStoreInstances" -> JInt(numStateStoreInstances)) ~
("customMetrics" -> {
if (!customMetrics.isEmpty) {
val keys = customMetrics.keySet.asScala.toSeq.sorted
keys.map { k => k -> JInt(customMetrics.get(k).toLong): JObject }.reduce(_ ~ _)
} else {
JNothing
}
})
}
override def toString: String = prettyJson
}
/**
* Information about progress made in the execution of a [[StreamingQuery]] during a trigger. Each
* event relates to processing done for a single trigger of the streaming query. Events are
* emitted even when no new data is available to be processed.
*
* @param id
* A unique query id that persists across restarts. See `StreamingQuery.id()`.
* @param runId
* A query id that is unique for every start/restart. See `StreamingQuery.runId()`.
* @param name
* User-specified name of the query, null if not specified.
* @param timestamp
* Beginning time of the trigger in ISO8601 format, i.e. UTC timestamps.
* @param batchId
* A unique id for the current batch of data being processed. Note that in the case of retries
* after a failure a given batchId my be executed more than once. Similarly, when there is no
* data to be processed, the batchId will not be incremented.
* @param batchDuration
* The process duration of each batch.
* @param durationMs
* The amount of time taken to perform various operations in milliseconds.
* @param eventTime
* Statistics of event time seen in this batch. It may contain the following keys:
* {{{
* "max" -> "2016-12-05T20:54:20.827Z" // maximum event time seen in this trigger
* "min" -> "2016-12-05T20:54:20.827Z" // minimum event time seen in this trigger
* "avg" -> "2016-12-05T20:54:20.827Z" // average event time seen in this trigger
* "watermark" -> "2016-12-05T20:54:20.827Z" // watermark used in this trigger
* }}}
* All timestamps are in ISO8601 format, i.e. UTC timestamps.
* @param stateOperators
* Information about operators in the query that store state.
* @param sources
* detailed statistics on data being read from each of the streaming sources.
* @since 3.5.0
*/
@Evolving
class StreamingQueryProgress private[spark] (
val id: UUID,
val runId: UUID,
val name: String,
val timestamp: String,
val batchId: Long,
val batchDuration: Long,
val durationMs: ju.Map[String, JLong],
val eventTime: ju.Map[String, String],
val stateOperators: Array[StateOperatorProgress],
val sources: Array[SourceProgress],
val sink: SinkProgress,
@JsonDeserialize(contentAs = classOf[GenericRowWithSchema])
val observedMetrics: ju.Map[String, Row])
extends Serializable {
/** The aggregate (across all sources) number of records processed in a trigger. */
def numInputRows: Long = sources.map(_.numInputRows).sum
/** The aggregate (across all sources) rate of data arriving. */
def inputRowsPerSecond: Double = sources.map(_.inputRowsPerSecond).sum
/** The aggregate (across all sources) rate at which Spark is processing data. */
def processedRowsPerSecond: Double = sources.map(_.processedRowsPerSecond).sum
/** The compact JSON representation of this progress. */
def json: String = compact(render(jsonValue))
/** The pretty (i.e. indented) JSON representation of this progress. */
def prettyJson: String = pretty(render(jsonValue))
override def toString: String = prettyJson
private[sql] def jsonValue: JValue = {
("id" -> JString(id.toString)) ~
("runId" -> JString(runId.toString)) ~
("name" -> JString(name)) ~
("timestamp" -> JString(timestamp)) ~
("batchId" -> JInt(batchId)) ~
("batchDuration" -> JInt(batchDuration)) ~
("numInputRows" -> JInt(numInputRows)) ~
("inputRowsPerSecond" -> safeDoubleToJValue(inputRowsPerSecond)) ~
("processedRowsPerSecond" -> safeDoubleToJValue(processedRowsPerSecond)) ~
("durationMs" -> safeMapToJValue[JLong](durationMs, v => JInt(v.toLong))) ~
("eventTime" -> safeMapToJValue[String](eventTime, s => JString(s))) ~
("stateOperators" -> JArray(stateOperators.map(_.jsonValue).toList)) ~
("sources" -> JArray(sources.map(_.jsonValue).toList)) ~
("sink" -> sink.jsonValue) ~
("observedMetrics" -> safeMapToJValue[Row](observedMetrics, row => row.jsonValue))
}
}
private[spark] object StreamingQueryProgress {
private val mapper = {
val ret = new ObjectMapper() with ClassTagExtensions
ret.registerModule(DefaultScalaModule)
ret.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false)
ret
}
private[spark] def jsonString(progress: StreamingQueryProgress): String =
mapper.writeValueAsString(progress)
private[spark] def fromJson(json: String): StreamingQueryProgress =
mapper.readValue[StreamingQueryProgress](json)
}
/**
* Information about progress made for a source in the execution of a [[StreamingQuery]] during a
* trigger. See [[StreamingQueryProgress]] for more information.
*
* @param description
* Description of the source.
* @param startOffset
* The starting offset for data being read.
* @param endOffset
* The ending offset for data being read.
* @param latestOffset
* The latest offset from this source.
* @param numInputRows
* The number of records read from this source.
* @param inputRowsPerSecond
* The rate at which data is arriving from this source.
* @param processedRowsPerSecond
* The rate at which data from this source is being processed by Spark.
* @since 3.5.0
*/
@Evolving
class SourceProgress protected[spark] (
val description: String,
val startOffset: String,
val endOffset: String,
val latestOffset: String,
val numInputRows: Long,
val inputRowsPerSecond: Double,
val processedRowsPerSecond: Double,
val metrics: ju.Map[String, String] = Map[String, String]().asJava)
extends Serializable {
/** The compact JSON representation of this progress. */
def json: String = compact(render(jsonValue))
/** The pretty (i.e. indented) JSON representation of this progress. */
def prettyJson: String = pretty(render(jsonValue))
override def toString: String = prettyJson
private[sql] def jsonValue: JValue = {
("description" -> JString(description)) ~
("startOffset" -> tryParse(startOffset)) ~
("endOffset" -> tryParse(endOffset)) ~
("latestOffset" -> tryParse(latestOffset)) ~
("numInputRows" -> JInt(numInputRows)) ~
("inputRowsPerSecond" -> safeDoubleToJValue(inputRowsPerSecond)) ~
("processedRowsPerSecond" -> safeDoubleToJValue(processedRowsPerSecond)) ~
("metrics" -> safeMapToJValue[String](metrics, s => JString(s)))
}
private def tryParse(json: String) = try {
parse(json)
} catch {
case NonFatal(e) => JString(json)
}
}
/**
* Information about progress made for a sink in the execution of a [[StreamingQuery]] during a
* trigger. See [[StreamingQueryProgress]] for more information.
*
* @param description
* Description of the source corresponding to this status.
* @param numOutputRows
* Number of rows written to the sink or -1 for Continuous Mode (temporarily) or Sink V1 (until
* decommissioned).
* @since 3.5.0
*/
@Evolving
class SinkProgress protected[spark] (
val description: String,
val numOutputRows: Long,
val metrics: ju.Map[String, String] = Map[String, String]().asJava)
extends Serializable {
/** SinkProgress without custom metrics. */
protected[sql] def this(description: String) = {
this(description, DEFAULT_NUM_OUTPUT_ROWS)
}
/** The compact JSON representation of this progress. */
def json: String = compact(render(jsonValue))
/** The pretty (i.e. indented) JSON representation of this progress. */
def prettyJson: String = pretty(render(jsonValue))
override def toString: String = prettyJson
private[sql] def jsonValue: JValue = {
("description" -> JString(description)) ~
("numOutputRows" -> JInt(numOutputRows)) ~
("metrics" -> safeMapToJValue[String](metrics, s => JString(s)))
}
}
private[sql] object SinkProgress {
val DEFAULT_NUM_OUTPUT_ROWS: Long = -1L
def apply(
description: String,
numOutputRows: Option[Long],
metrics: ju.Map[String, String] = Map[String, String]().asJava): SinkProgress =
new SinkProgress(description, numOutputRows.getOrElse(DEFAULT_NUM_OUTPUT_ROWS), metrics)
}
private object SafeJsonSerializer {
def safeDoubleToJValue(value: Double): JValue = {
if (value.isNaN || value.isInfinity) JNothing else JDouble(value)
}
/** Convert map to JValue while handling empty maps. Also, this sorts the keys. */
def safeMapToJValue[T](map: ju.Map[String, T], valueToJValue: T => JValue): JValue = {
if (map == null || map.isEmpty) return JNothing
val keys = map.asScala.keySet.toSeq.sorted
keys.map { k => k -> valueToJValue(map.get(k)): JObject }.reduce(_ ~ _)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy