com.databricks.sdk.service.ml.ExperimentsAPI Maven / Gradle / Ivy
// Code generated from OpenAPI specs by Databricks SDK Generator. DO NOT EDIT.
package com.databricks.sdk.service.ml;
import com.databricks.sdk.core.ApiClient;
import com.databricks.sdk.support.Generated;
import com.databricks.sdk.support.Paginator;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* Experiments are the primary unit of organization in MLflow; all MLflow runs belong to an
* experiment. Each experiment lets you visualize, search, and compare runs, as well as download run
* artifacts or metadata for analysis in other tools. Experiments are maintained in a Databricks
* hosted MLflow tracking server.
*
* Experiments are located in the workspace file tree. You manage experiments using the same
* tools you use to manage other workspace objects such as folders, notebooks, and libraries.
*/
@Generated
public class ExperimentsAPI {
private static final Logger LOG = LoggerFactory.getLogger(ExperimentsAPI.class);
private final ExperimentsService impl;
/** Regular-use constructor */
public ExperimentsAPI(ApiClient apiClient) {
impl = new ExperimentsImpl(apiClient);
}
/** Constructor for mocks */
public ExperimentsAPI(ExperimentsService mock) {
impl = mock;
}
public CreateExperimentResponse createExperiment(String name) {
return createExperiment(new CreateExperiment().setName(name));
}
/**
* Create experiment.
*
*
Creates an experiment with a name. Returns the ID of the newly created experiment. Validates
* that another experiment with the same name does not already exist and fails if another
* experiment with the same name already exists.
*
*
Throws `RESOURCE_ALREADY_EXISTS` if a experiment with the given name exists.
*/
public CreateExperimentResponse createExperiment(CreateExperiment request) {
return impl.createExperiment(request);
}
/**
* Create a run.
*
*
Creates a new run within an experiment. A run is usually a single execution of a machine
* learning or data ETL pipeline. MLflow uses runs to track the `mlflowParam`, `mlflowMetric` and
* `mlflowRunTag` associated with a single execution.
*/
public CreateRunResponse createRun(CreateRun request) {
return impl.createRun(request);
}
public void deleteExperiment(String experimentId) {
deleteExperiment(new DeleteExperiment().setExperimentId(experimentId));
}
/**
* Delete an experiment.
*
*
Marks an experiment and associated metadata, runs, metrics, params, and tags for deletion.
* If the experiment uses FileStore, artifacts associated with experiment are also deleted.
*/
public void deleteExperiment(DeleteExperiment request) {
impl.deleteExperiment(request);
}
public void deleteRun(String runId) {
deleteRun(new DeleteRun().setRunId(runId));
}
/**
* Delete a run.
*
*
Marks a run for deletion.
*/
public void deleteRun(DeleteRun request) {
impl.deleteRun(request);
}
public DeleteRunsResponse deleteRuns(String experimentId, long maxTimestampMillis) {
return deleteRuns(
new DeleteRuns().setExperimentId(experimentId).setMaxTimestampMillis(maxTimestampMillis));
}
/**
* Delete runs by creation time.
*
*
Bulk delete runs in an experiment that were created prior to or at the specified timestamp.
* Deletes at most max_runs per request. To call this API from a Databricks Notebook in Python,
* you can use the client code snippet on
* https://learn.microsoft.com/en-us/azure/databricks/mlflow/runs#bulk-delete.
*/
public DeleteRunsResponse deleteRuns(DeleteRuns request) {
return impl.deleteRuns(request);
}
public void deleteTag(String runId, String key) {
deleteTag(new DeleteTag().setRunId(runId).setKey(key));
}
/**
* Delete a tag.
*
*
Deletes a tag on a run. Tags are run metadata that can be updated during a run and after a
* run completes.
*/
public void deleteTag(DeleteTag request) {
impl.deleteTag(request);
}
public GetExperimentResponse getByName(String experimentName) {
return getByName(new GetByNameRequest().setExperimentName(experimentName));
}
/**
* Get metadata.
*
*
Gets metadata for an experiment.
*
*
This endpoint will return deleted experiments, but prefers the active experiment if an
* active and deleted experiment share the same name. If multiple deleted experiments share the
* same name, the API will return one of them.
*
*
Throws `RESOURCE_DOES_NOT_EXIST` if no experiment with the specified name exists.
*/
public GetExperimentResponse getByName(GetByNameRequest request) {
return impl.getByName(request);
}
public GetExperimentResponse getExperiment(String experimentId) {
return getExperiment(new GetExperimentRequest().setExperimentId(experimentId));
}
/**
* Get an experiment.
*
*
Gets metadata for an experiment. This method works on deleted experiments.
*/
public GetExperimentResponse getExperiment(GetExperimentRequest request) {
return impl.getExperiment(request);
}
public Iterable getHistory(String metricKey) {
return getHistory(new GetHistoryRequest().setMetricKey(metricKey));
}
/**
* Get history of a given metric within a run.
*
* Gets a list of all values for the specified metric for a given run.
*/
public Iterable getHistory(GetHistoryRequest request) {
return new Paginator<>(
request,
impl::getHistory,
GetMetricHistoryResponse::getMetrics,
response -> {
String token = response.getNextPageToken();
if (token == null) {
return null;
}
return request.setPageToken(token);
});
}
public GetExperimentPermissionLevelsResponse getPermissionLevels(String experimentId) {
return getPermissionLevels(
new GetExperimentPermissionLevelsRequest().setExperimentId(experimentId));
}
/**
* Get experiment permission levels.
*
* Gets the permission levels that a user can have on an object.
*/
public GetExperimentPermissionLevelsResponse getPermissionLevels(
GetExperimentPermissionLevelsRequest request) {
return impl.getPermissionLevels(request);
}
public ExperimentPermissions getPermissions(String experimentId) {
return getPermissions(new GetExperimentPermissionsRequest().setExperimentId(experimentId));
}
/**
* Get experiment permissions.
*
*
Gets the permissions of an experiment. Experiments can inherit permissions from their root
* object.
*/
public ExperimentPermissions getPermissions(GetExperimentPermissionsRequest request) {
return impl.getPermissions(request);
}
public GetRunResponse getRun(String runId) {
return getRun(new GetRunRequest().setRunId(runId));
}
/**
* Get a run.
*
*
Gets the metadata, metrics, params, and tags for a run. In the case where multiple metrics
* with the same key are logged for a run, return only the value with the latest timestamp.
*
*
If there are multiple values with the latest timestamp, return the maximum of these values.
*/
public GetRunResponse getRun(GetRunRequest request) {
return impl.getRun(request);
}
/**
* Get all artifacts.
*
*
List artifacts for a run. Takes an optional `artifact_path` prefix. If it is specified, the
* response contains only artifacts with the specified prefix.",
*/
public Iterable listArtifacts(ListArtifactsRequest request) {
return new Paginator<>(
request,
impl::listArtifacts,
ListArtifactsResponse::getFiles,
response -> {
String token = response.getNextPageToken();
if (token == null) {
return null;
}
return request.setPageToken(token);
});
}
/**
* List experiments.
*
* Gets a list of all experiments.
*/
public Iterable listExperiments(ListExperimentsRequest request) {
return new Paginator<>(
request,
impl::listExperiments,
ListExperimentsResponse::getExperiments,
response -> {
String token = response.getNextPageToken();
if (token == null) {
return null;
}
return request.setPageToken(token);
});
}
/**
* Log a batch.
*
* Logs a batch of metrics, params, and tags for a run. If any data failed to be persisted, the
* server will respond with an error (non-200 status code).
*
*
In case of error (due to internal server error or an invalid request), partial data may be
* written.
*
*
You can write metrics, params, and tags in interleaving fashion, but within a given entity
* type are guaranteed to follow the order specified in the request body.
*
*
The overwrite behavior for metrics, params, and tags is as follows:
*
*
* Metrics: metric values are never overwritten. Logging a metric (key, value, timestamp)
* appends to the set of values for the metric with the provided key.
*
*
* Tags: tag values can be overwritten by successive writes to the same tag key. That is, if
* multiple tag values with the same key are provided in the same API request, the last-provided
* tag value is written. Logging the same tag (key, value) is permitted. Specifically, logging a
* tag is idempotent.
*
*
* Parameters: once written, param values cannot be changed (attempting to overwrite a param
* value will result in an error). However, logging the same param (key, value) is permitted.
* Specifically, logging a param is idempotent.
*
*
Request Limits ------------------------------- A single JSON-serialized API request may be
* up to 1 MB in size and contain:
*
*
* No more than 1000 metrics, params, and tags in total * Up to 1000 metrics * Up to 100
* params * Up to 100 tags
*
*
For example, a valid request might contain 900 metrics, 50 params, and 50 tags, but logging
* 900 metrics, 50 params, and 51 tags is invalid.
*
*
The following limits also apply to metric, param, and tag keys and values:
*
*
* Metric keys, param keys, and tag keys can be up to 250 characters in length * Parameter
* and tag values can be up to 250 characters in length
*/
public void logBatch(LogBatch request) {
impl.logBatch(request);
}
/**
* Log inputs to a run.
*
*
**NOTE:** Experimental: This API may change or be removed in a future release without
* warning.
*/
public void logInputs(LogInputs request) {
impl.logInputs(request);
}
public void logMetric(String key, double value, long timestamp) {
logMetric(new LogMetric().setKey(key).setValue(value).setTimestamp(timestamp));
}
/**
* Log a metric.
*
*
Logs a metric for a run. A metric is a key-value pair (string key, float value) with an
* associated timestamp. Examples include the various metrics that represent ML model accuracy. A
* metric can be logged multiple times.
*/
public void logMetric(LogMetric request) {
impl.logMetric(request);
}
/**
* Log a model.
*
*
**NOTE:** Experimental: This API may change or be removed in a future release without
* warning.
*/
public void logModel(LogModel request) {
impl.logModel(request);
}
public void logParam(String key, String value) {
logParam(new LogParam().setKey(key).setValue(value));
}
/**
* Log a param.
*
*
Logs a param used for a run. A param is a key-value pair (string key, string value).
* Examples include hyperparameters used for ML model training and constant dates and values used
* in an ETL pipeline. A param can be logged only once for a run.
*/
public void logParam(LogParam request) {
impl.logParam(request);
}
public void restoreExperiment(String experimentId) {
restoreExperiment(new RestoreExperiment().setExperimentId(experimentId));
}
/**
* Restores an experiment.
*
*
Restore an experiment marked for deletion. This also restores associated metadata, runs,
* metrics, params, and tags. If experiment uses FileStore, underlying artifacts associated with
* experiment are also restored.
*
*
Throws `RESOURCE_DOES_NOT_EXIST` if experiment was never created or was permanently deleted.
*/
public void restoreExperiment(RestoreExperiment request) {
impl.restoreExperiment(request);
}
public void restoreRun(String runId) {
restoreRun(new RestoreRun().setRunId(runId));
}
/**
* Restore a run.
*
*
Restores a deleted run.
*/
public void restoreRun(RestoreRun request) {
impl.restoreRun(request);
}
public RestoreRunsResponse restoreRuns(String experimentId, long minTimestampMillis) {
return restoreRuns(
new RestoreRuns().setExperimentId(experimentId).setMinTimestampMillis(minTimestampMillis));
}
/**
* Restore runs by deletion time.
*
*
Bulk restore runs in an experiment that were deleted no earlier than the specified
* timestamp. Restores at most max_runs per request. To call this API from a Databricks Notebook
* in Python, you can use the client code snippet on
* https://learn.microsoft.com/en-us/azure/databricks/mlflow/runs#bulk-restore.
*/
public RestoreRunsResponse restoreRuns(RestoreRuns request) {
return impl.restoreRuns(request);
}
/**
* Search experiments.
*
*
Searches for experiments that satisfy specified search criteria.
*/
public Iterable searchExperiments(SearchExperiments request) {
return new Paginator<>(
request,
impl::searchExperiments,
SearchExperimentsResponse::getExperiments,
response -> {
String token = response.getNextPageToken();
if (token == null) {
return null;
}
return request.setPageToken(token);
});
}
/**
* Search for runs.
*
* Searches for runs that satisfy expressions.
*
*
Search expressions can use `mlflowMetric` and `mlflowParam` keys.",
*/
public Iterable searchRuns(SearchRuns request) {
return new Paginator<>(
request,
impl::searchRuns,
SearchRunsResponse::getRuns,
response -> {
String token = response.getNextPageToken();
if (token == null) {
return null;
}
return request.setPageToken(token);
});
}
public void setExperimentTag(String experimentId, String key, String value) {
setExperimentTag(
new SetExperimentTag().setExperimentId(experimentId).setKey(key).setValue(value));
}
/**
* Set a tag.
*
* Sets a tag on an experiment. Experiment tags are metadata that can be updated.
*/
public void setExperimentTag(SetExperimentTag request) {
impl.setExperimentTag(request);
}
public ExperimentPermissions setPermissions(String experimentId) {
return setPermissions(new ExperimentPermissionsRequest().setExperimentId(experimentId));
}
/**
* Set experiment permissions.
*
*
Sets permissions on an experiment. Experiments can inherit permissions from their root
* object.
*/
public ExperimentPermissions setPermissions(ExperimentPermissionsRequest request) {
return impl.setPermissions(request);
}
public void setTag(String key, String value) {
setTag(new SetTag().setKey(key).setValue(value));
}
/**
* Set a tag.
*
*
Sets a tag on a run. Tags are run metadata that can be updated during a run and after a run
* completes.
*/
public void setTag(SetTag request) {
impl.setTag(request);
}
public void updateExperiment(String experimentId) {
updateExperiment(new UpdateExperiment().setExperimentId(experimentId));
}
/**
* Update an experiment.
*
*
Updates experiment metadata.
*/
public void updateExperiment(UpdateExperiment request) {
impl.updateExperiment(request);
}
public ExperimentPermissions updatePermissions(String experimentId) {
return updatePermissions(new ExperimentPermissionsRequest().setExperimentId(experimentId));
}
/**
* Update experiment permissions.
*
*
Updates the permissions on an experiment. Experiments can inherit permissions from their
* root object.
*/
public ExperimentPermissions updatePermissions(ExperimentPermissionsRequest request) {
return impl.updatePermissions(request);
}
/**
* Update a run.
*
*
Updates run metadata.
*/
public UpdateRunResponse updateRun(UpdateRun request) {
return impl.updateRun(request);
}
public ExperimentsService impl() {
return impl;
}
}