All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.databricks.sdk.service.catalog.MonitorInferenceLog Maven / Gradle / Ivy

The newest version!
// Code generated from OpenAPI specs by Databricks SDK Generator. DO NOT EDIT.

package com.databricks.sdk.service.catalog;

import com.databricks.sdk.support.Generated;
import com.databricks.sdk.support.ToStringer;
import com.fasterxml.jackson.annotation.JsonProperty;
import java.util.Collection;
import java.util.Objects;

@Generated
public class MonitorInferenceLog {
  /**
   * Granularities for aggregating data into time windows based on their timestamp. Currently the
   * following static granularities are supported: {``"5 minutes"``, ``"30 minutes"``, ``"1 hour"``,
   * ``"1 day"``, ``" week(s)"``, ``"1 month"``, ``"1 year"``}.
   */
  @JsonProperty("granularities")
  private Collection granularities;

  /** Optional column that contains the ground truth for the prediction. */
  @JsonProperty("label_col")
  private String labelCol;

  /**
   * Column that contains the id of the model generating the predictions. Metrics will be computed
   * per model id by default, and also across all model ids.
   */
  @JsonProperty("model_id_col")
  private String modelIdCol;

  /** Column that contains the output/prediction from the model. */
  @JsonProperty("prediction_col")
  private String predictionCol;

  /**
   * Optional column that contains the prediction probabilities for each class in a classification
   * problem type. The values in this column should be a map, mapping each class label to the
   * prediction probability for a given sample. The map should be of PySpark MapType().
   */
  @JsonProperty("prediction_proba_col")
  private String predictionProbaCol;

  /**
   * Problem type the model aims to solve. Determines the type of model-quality metrics that will be
   * computed.
   */
  @JsonProperty("problem_type")
  private MonitorInferenceLogProblemType problemType;

  /**
   * Column that contains the timestamps of requests. The column must be one of the following: - A
   * ``TimestampType`` column - A column whose values can be converted to timestamps through the
   * pyspark ``to_timestamp`` [function].
   *
   * 

[function]: * https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.functions.to_timestamp.html */ @JsonProperty("timestamp_col") private String timestampCol; public MonitorInferenceLog setGranularities(Collection granularities) { this.granularities = granularities; return this; } public Collection getGranularities() { return granularities; } public MonitorInferenceLog setLabelCol(String labelCol) { this.labelCol = labelCol; return this; } public String getLabelCol() { return labelCol; } public MonitorInferenceLog setModelIdCol(String modelIdCol) { this.modelIdCol = modelIdCol; return this; } public String getModelIdCol() { return modelIdCol; } public MonitorInferenceLog setPredictionCol(String predictionCol) { this.predictionCol = predictionCol; return this; } public String getPredictionCol() { return predictionCol; } public MonitorInferenceLog setPredictionProbaCol(String predictionProbaCol) { this.predictionProbaCol = predictionProbaCol; return this; } public String getPredictionProbaCol() { return predictionProbaCol; } public MonitorInferenceLog setProblemType(MonitorInferenceLogProblemType problemType) { this.problemType = problemType; return this; } public MonitorInferenceLogProblemType getProblemType() { return problemType; } public MonitorInferenceLog setTimestampCol(String timestampCol) { this.timestampCol = timestampCol; return this; } public String getTimestampCol() { return timestampCol; } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; MonitorInferenceLog that = (MonitorInferenceLog) o; return Objects.equals(granularities, that.granularities) && Objects.equals(labelCol, that.labelCol) && Objects.equals(modelIdCol, that.modelIdCol) && Objects.equals(predictionCol, that.predictionCol) && Objects.equals(predictionProbaCol, that.predictionProbaCol) && Objects.equals(problemType, that.problemType) && Objects.equals(timestampCol, that.timestampCol); } @Override public int hashCode() { return Objects.hash( granularities, labelCol, modelIdCol, predictionCol, predictionProbaCol, problemType, timestampCol); } @Override public String toString() { return new ToStringer(MonitorInferenceLog.class) .add("granularities", granularities) .add("labelCol", labelCol) .add("modelIdCol", modelIdCol) .add("predictionCol", predictionCol) .add("predictionProbaCol", predictionProbaCol) .add("problemType", problemType) .add("timestampCol", timestampCol) .toString(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy