All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.databricks.sdk.service.catalog.MonitorMetric Maven / Gradle / Ivy

The newest version!
// Code generated from OpenAPI specs by Databricks SDK Generator. DO NOT EDIT.

package com.databricks.sdk.service.catalog;

import com.databricks.sdk.support.Generated;
import com.databricks.sdk.support.ToStringer;
import com.fasterxml.jackson.annotation.JsonProperty;
import java.util.Collection;
import java.util.Objects;

@Generated
public class MonitorMetric {
  /**
   * Jinja template for a SQL expression that specifies how to compute the metric. See [create
   * metric definition].
   *
   * 

[create metric definition]: * https://docs.databricks.com/en/lakehouse-monitoring/custom-metrics.html#create-definition */ @JsonProperty("definition") private String definition; /** * A list of column names in the input table the metric should be computed for. Can use * ``":table"`` to indicate that the metric needs information from multiple columns. */ @JsonProperty("input_columns") private Collection inputColumns; /** Name of the metric in the output tables. */ @JsonProperty("name") private String name; /** The output type of the custom metric. */ @JsonProperty("output_data_type") private String outputDataType; /** * Can only be one of ``"CUSTOM_METRIC_TYPE_AGGREGATE"``, ``"CUSTOM_METRIC_TYPE_DERIVED"``, or * ``"CUSTOM_METRIC_TYPE_DRIFT"``. The ``"CUSTOM_METRIC_TYPE_AGGREGATE"`` and * ``"CUSTOM_METRIC_TYPE_DERIVED"`` metrics are computed on a single table, whereas the * ``"CUSTOM_METRIC_TYPE_DRIFT"`` compare metrics across baseline and input table, or across the * two consecutive time windows. - CUSTOM_METRIC_TYPE_AGGREGATE: only depend on the existing * columns in your table - CUSTOM_METRIC_TYPE_DERIVED: depend on previously computed aggregate * metrics - CUSTOM_METRIC_TYPE_DRIFT: depend on previously computed aggregate or derived metrics */ @JsonProperty("type") private MonitorMetricType typeValue; public MonitorMetric setDefinition(String definition) { this.definition = definition; return this; } public String getDefinition() { return definition; } public MonitorMetric setInputColumns(Collection inputColumns) { this.inputColumns = inputColumns; return this; } public Collection getInputColumns() { return inputColumns; } public MonitorMetric setName(String name) { this.name = name; return this; } public String getName() { return name; } public MonitorMetric setOutputDataType(String outputDataType) { this.outputDataType = outputDataType; return this; } public String getOutputDataType() { return outputDataType; } public MonitorMetric setType(MonitorMetricType typeValue) { this.typeValue = typeValue; return this; } public MonitorMetricType getType() { return typeValue; } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; MonitorMetric that = (MonitorMetric) o; return Objects.equals(definition, that.definition) && Objects.equals(inputColumns, that.inputColumns) && Objects.equals(name, that.name) && Objects.equals(outputDataType, that.outputDataType) && Objects.equals(typeValue, that.typeValue); } @Override public int hashCode() { return Objects.hash(definition, inputColumns, name, outputDataType, typeValue); } @Override public String toString() { return new ToStringer(MonitorMetric.class) .add("definition", definition) .add("inputColumns", inputColumns) .add("name", name) .add("outputDataType", outputDataType) .add("typeValue", typeValue) .toString(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy