com.datamountaineer.streamreactor.connect.converters.source.JsonConverterWithSchemaEvolution.scala Maven / Gradle / Ivy
/*
* Copyright 2017 Datamountaineer.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.datamountaineer.streamreactor.connect.converters.source
import java.nio.charset.Charset
import java.util
import java.util.Collections
import com.datamountaineer.streamreactor.connect.converters.MsgKey
import io.confluent.connect.avro.AvroData
import org.apache.kafka.connect.data._
import org.apache.kafka.connect.source.SourceRecord
/**
* Experimental
*/
class JsonConverterWithSchemaEvolution extends Converter {
private val avroData = new AvroData(4)
implicit private var latestSchema: Option[Schema] = None
override def convert(kafkaTopic: String,
mqttSource: String,
messageId: String,
bytes: Array[Byte],
keys: Seq[String] = Seq.empty,
keyDelimiter: String = ".",
properties: Map[String, String] = Map.empty): SourceRecord = {
require(bytes != null, s"Invalid $bytes parameter")
val json = new String(bytes, Charset.defaultCharset)
val schemaAndValue = JsonConverterWithSchemaEvolution.convert(mqttSource, json)
latestSchema = Some(schemaAndValue.schema())
val value = schemaAndValue.value()
value match {
case s: Struct if keys.nonEmpty =>
val keysValue = keys.flatMap { key =>
Option(KeyExtractor.extract(s, key.split('.').toVector)).map(_.toString)
}.mkString(keyDelimiter)
new SourceRecord(null,
Collections.singletonMap(JsonConverterWithSchemaEvolution.ConfigKey, latestSchema.map(avroData.fromConnectSchema(_).toString).orNull),
kafkaTopic,
Schema.STRING_SCHEMA,
keysValue,
schemaAndValue.schema(),
schemaAndValue.value())
case _ =>
new SourceRecord(null,
Collections.singletonMap(JsonConverterWithSchemaEvolution.ConfigKey, latestSchema.map(avroData.fromConnectSchema(_).toString).orNull),
kafkaTopic,
MsgKey.schema,
MsgKey.getStruct(mqttSource, messageId),
schemaAndValue.schema(),
schemaAndValue.value())
}
}
}
object JsonConverterWithSchemaEvolution {
val ConfigKey = "JsonConverterWithSchemaEvolution.Schema"
import org.json4s._
import org.json4s.native.JsonMethods._
def convert(name: String, str: String)(implicit schema: Option[Schema]): SchemaAndValue = convert(name, parse(str))
def convert(name: String, value: JValue)(implicit aggregatedSchema: Option[Schema]): SchemaAndValue = {
value match {
case JArray(arr) =>
val values = new util.ArrayList[AnyRef]()
val prevSchema = aggregatedSchema.map(_.field(name)).map(_.schema)
val sv = convert(name, arr.head)(prevSchema)
values.add(sv.value())
arr.tail.foreach { v => values.add(convert(name, v)(prevSchema).value()) }
val schema = SchemaBuilder.array(sv.schema()).optional().build()
new SchemaAndValue(schema, values)
case JBool(b) => new SchemaAndValue(Schema.OPTIONAL_BOOLEAN_SCHEMA, b)
case JDecimal(d) =>
val schema = Decimal.builder(d.scale).optional().build()
new SchemaAndValue(schema, Decimal.fromLogical(schema, d.bigDecimal))
case JDouble(d) => new SchemaAndValue(Schema.OPTIONAL_FLOAT64_SCHEMA, d)
case JInt(i) => new SchemaAndValue(Schema.OPTIONAL_INT64_SCHEMA, i.toLong) //on purpose! LONG (we might get later records with long entries)
case JLong(l) => new SchemaAndValue(Schema.OPTIONAL_INT64_SCHEMA, l)
case JNull | JNothing => new SchemaAndValue(Schema.OPTIONAL_STRING_SCHEMA, null)
case JString(s) => new SchemaAndValue(Schema.OPTIONAL_STRING_SCHEMA, s)
case JObject(values) =>
val builder = SchemaBuilder.struct().name(name)
val fields = values.map { case (n, v) =>
val prevSchema = aggregatedSchema.map(_.field(n)).map(_.schema())
val schemaAndValue = convert(n, v)(prevSchema)
builder.field(n, schemaAndValue.schema())
n -> schemaAndValue.value()
}.toMap
val schema = builder.build()
import scala.collection.JavaConverters._
aggregatedSchema
.foreach { schema =>
schema.fields().asScala
.withFilter(f => !fields.contains(f.name()))
.foreach { f =>
builder.field(f.name(), f.schema())
}
}
val struct = new Struct(schema)
fields.foreach { case (field, v) => struct.put(field, v) }
new SchemaAndValue(schema, struct)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy