All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.datamountaineer.streamreactor.connect.schemas.ConverterUtil.scala Maven / Gradle / Ivy

/*
 *  Copyright 2017 Datamountaineer.
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *  http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

package com.datamountaineer.streamreactor.connect.schemas

import com.datamountaineer.streamreactor.connect.json.SimpleJsonConverter
import com.fasterxml.jackson.databind.JsonNode
import io.confluent.connect.avro.{AvroConverter, AvroData}
import org.apache.avro.generic.GenericRecord
import org.apache.kafka.connect.connector.ConnectRecord
import org.apache.kafka.connect.data._
import org.apache.kafka.connect.json.JsonDeserializer
import org.apache.kafka.connect.sink.SinkRecord
import org.apache.kafka.connect.storage.Converter
import org.json4s._
import org.json4s.jackson.JsonMethods._

import scala.collection.JavaConverters._
import scala.collection.immutable.HashMap
import scala.collection.mutable
import scala.util.Try

/**
  * Created by [email protected] on 22/02/16. 
  * stream-reactor
  */


trait ConverterUtil {
  type avroSchema = org.apache.avro.Schema

  lazy val simpleJsonConverter = new SimpleJsonConverter()
  lazy val deserializer = new JsonDeserializer()
  lazy val avroConverter = new AvroConverter()
  lazy val avroData = new AvroData(100)

  /**
    * For a schemaless payload when used for a json the connect JsonConverter will provide a Map[_,_] instance as it deserializes
    * the payload
    *
    * @param record       - The connect record to extract the fields from
    * @param fields       - A map of fields alias
    * @param ignoreFields - The list of fields to leave out
    * @param key          - if true it will use record.key to do the transformation; if false will use record.value
    * @return
    */
  def convertSchemalessJson(record: SinkRecord,
                            fields: Map[String, String],
                            ignoreFields: Set[String] = Set.empty[String],
                            key: Boolean = false,
                            includeAllFields: Boolean = true): java.util.Map[String, Any] = {
    val value: java.util.Map[String, Any] = (if (key) record.key() else record.value()) match {
      case s: java.util.Map[_, _] => s.asInstanceOf[java.util.Map[String, Any]]
      case other => sys.error(s"${other.getClass} is not valid. Expecting a Struct")
    }

    ignoreFields.foreach(value.remove)
    if (!includeAllFields) {
      value.keySet().asScala.filterNot(fields.contains).foreach(value.remove)
    }

    fields
      .filter { case (field, alias) => field != alias }
      .foreach { case (field, alias) =>
        Option(value.get(field)).foreach { v =>
          value.remove(field)
          value.put(alias, v)
        }
      }
    value
  }

  /**
    * Handles scenarios where the sink record schema is set to string and the payload is json
    *
    * @param record              - the sink record instance
    * @param fields              - fields to include/select
    * @param ignoreFields        - fields to ignore/remove
    * @param key                 -if true it targets the sinkrecord key; otherwise it uses the sinkrecord.value
    * @param includeAllFields    - if false it will remove the fields not present in the fields parameter
    * @param ignoredFieldsValues - We need to retain the removed fields; in influxdb we might choose to set tags from ignored fields
    * @return
    */
  def convertStringSchemaAndJson(record: SinkRecord,
                                 fields: Map[String, String],
                                 ignoreFields: Set[String] = Set.empty[String],
                                 key: Boolean = false,
                                 includeAllFields: Boolean = true,
                                 ignoredFieldsValues: Option[mutable.Map[String, Any]] = None): JValue = {

    val schema = if (key) record.keySchema() else record.valueSchema()
    require(schema != null && schema.`type`() == Schema.STRING_SCHEMA.`type`(), s"$schema is not handled. Expecting Schema.String")

    val jsonValue: String = (if (key) record.key() else record.value()) match {
      case s: String => s
      case other => sys.error(s"${other.getClass} is not valid. Expecting a Struct")
    }

    val json = Try(parse(jsonValue)).getOrElse(sys.error(s"Invalid json with the record on topic ${record.topic} and offset ${record.kafkaOffset()}"))


    val withFieldsRemoved = ignoreFields.foldLeft(json) { case (j, ignored) =>
      j.removeField {
        case (`ignored`, v) =>
          ignoredFieldsValues.foreach { map =>
            val value = v match {
              case JString(s) => s
              case JDouble(d) => d
              case JInt(i) => i
              case JLong(l) => l
              case JDecimal(d) => d
              case other => null
            }
            map += ignored -> value
          }
          true
        case _ => false
      }
    }

    val jvalue = if (!includeAllFields) {
      withFieldsRemoved.removeField { case (field, _) => !fields.contains(field) }
    } else withFieldsRemoved

    fields.filter { case (field, alias) => field != alias }
      .foldLeft(jvalue) { case (j, (field, alias)) =>
        j.transformField {
          case JField(`field`, v) => (alias, v)
          case other: JField => other
        }
      }
  }

  /**
    * Create a Struct based on a set of fields to extract from a ConnectRecord
    *
    * @param record       The connectRecord to extract the fields from.
    * @param fields       The fields to extract.
    * @param ignoreFields Fields to ignore from the sink records.
    * @param key          Extract the fields from the key or the value of the ConnectRecord.
    * @return A new Struct with the fields specified in the fieldsMappings.
    **/
  def convert(record: SinkRecord,
              fields: Map[String, String],
              ignoreFields: Set[String] = Set.empty[String],
              key: Boolean = false): SinkRecord = {

    val value: Struct = (if (key) record.key() else record.value()) match {
      case s: Struct => s
      case other => sys.error(s"${other.getClass} is not valid. Expecting a Struct")
    }


    if ((fields.isEmpty && ignoreFields.isEmpty) || (ignoreFields.isEmpty && fields.head._1.equals("*"))) {
      record
    } else {
      val currentSchema = if (key) record.keySchema() else record.valueSchema()
      val builder: SchemaBuilder = SchemaBuilder.struct.name(record.topic() + "_extracted")

      //build a new schema for the fields
      if (fields.nonEmpty) {
        fields.foreach({ case (name, alias) =>
          val extractedSchema = currentSchema.field(name)
          require(extractedSchema != null, s"Could not find $name in the schema fields. Available fields are:${currentSchema.fields().asScala.map(_.name()).mkString(",")}")
          builder.field(alias, extractedSchema.schema())
        })
      } else if (ignoreFields.nonEmpty) {
        val ignored = currentSchema.fields().asScala.filterNot(f => ignoreFields.contains(f.name()))
        ignored.foreach(i => builder.field(i.name, i.schema))
      } else {
        currentSchema.fields().asScala.foreach(f => builder.field(f.name(), f.schema()))
      }

      val extractedSchema = builder.build()
      val newStruct = new Struct(extractedSchema)
      fields.foreach({ case (name, alias) => newStruct.put(alias, value.get(name)) })

      new SinkRecord(record.topic(), record.kafkaPartition(), Schema.STRING_SCHEMA, "key", extractedSchema, newStruct,
        record.kafkaOffset(), record.timestamp(), record.timestampType())
    }
  }

  /**
    * Convert a ConnectRecord value to a Json string using Kafka Connects deserializer
    *
    * @param record A ConnectRecord to extract the payload value from
    * @return A json string for the payload of the record
    **/
  def convertValueToJson[T <: ConnectRecord[T]](record: ConnectRecord[T]): JsonNode = {
    simpleJsonConverter.fromConnectData(record.valueSchema(), record.value())
  }

  /**
    * Convert a ConnectRecord key to a Json string using Kafka Connects deserializer
    *
    * @param record A ConnectRecord to extract the payload value from
    * @return A json string for the payload of the record
    **/
  def convertKeyToJson[T <: ConnectRecord[T]](record: ConnectRecord[T]): JsonNode = {
    simpleJsonConverter.fromConnectData(record.keySchema(), record.key())
  }

  /**
    * Deserialize Byte array for a topic to json
    *
    * @param topic   Topic name for the byte array
    * @param payload Byte Array payload
    * @return A JsonNode representing the byte array
    **/
  def deserializeToJson(topic: String, payload: Array[Byte]): JsonNode = {
    val json = deserializer.deserialize(topic, payload).get("payload")
    json
  }

  /**
    * Configure the converter
    *
    * @param converter The Converter to configure
    * @param props     The props to configure with
    **/
  def configureConverter(converter: Converter, props: HashMap[String, String] = new HashMap[String, String]) = {
    converter.configure(props.asJava, false)
  }

  /**
    * Convert SinkRecord to GenericRecord
    *
    * @param record ConnectRecord to convert
    * @return a GenericRecord
    **/
  def convertValueToGenericAvro[T <: ConnectRecord[T]](record: ConnectRecord[T]): GenericRecord = {
    val avro = avroData.fromConnectData(record.valueSchema(), record.value())
    avro.asInstanceOf[GenericRecord]
  }

  def convertAvroToConnect(topic: String, obj: Array[Byte]) = avroConverter.toConnectData(topic, obj)
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy