![JAR search and dependency download from the Maven repository](/logo.png)
com.datumbox.framework.common.interfaces.Trainable Maven / Gradle / Ivy
/**
* Copyright (C) 2013-2016 Vasilis Vryniotis
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.datumbox.framework.common.interfaces;
import com.datumbox.framework.common.Configuration;
import com.datumbox.framework.common.dataobjects.Dataframe;
import java.lang.reflect.InvocationTargetException;
/**
* This interface is used to mark classes that can be trained. This interface
* used for classes that perform training/analysis and learn parameters.
*
* @author Vasilis Vryniotis
* @param
* @param
*/
public interface Trainable extends AutoCloseable {
/**
* Generates a new instance of a Trainable by providing the Class of
* the algorithm.
*
* @param
* @param aClass
* @param dbName
* @param conf
* @return
*/
public static BT newInstance(Class aClass, String dbName, Configuration conf) {
BT algorithm = null;
try {
algorithm = aClass.getConstructor(String.class, Configuration.class).newInstance(dbName, conf);
}
catch (InstantiationException | IllegalAccessException | IllegalArgumentException | InvocationTargetException | NoSuchMethodException | SecurityException ex) {
throw new RuntimeException(ex);
}
return algorithm;
}
/**
* Returns the model parameters that were estimated after training.
*
* @return
*/
public MP getModelParameters();
/**
* It returns the training parameters that configure the algorithm.
*
* @return
*/
public TP getTrainingParameters();
/**
* Trains a model using the provided training parameters and data.
*
* @param trainingData
* @param trainingParameters
*/
public void fit(Dataframe trainingData, TP trainingParameters);
/**
* Deletes the database of the algorithm.
*/
public void delete();
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy