All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.davidbracewell.apollo.affinity.Measure Maven / Gradle / Ivy

/*
 * (c) 2005 David B. Bracewell
 *
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package com.davidbracewell.apollo.affinity;

import com.davidbracewell.apollo.analysis.Optimum;
import com.davidbracewell.apollo.linalg.DenseVector;
import com.davidbracewell.apollo.linalg.Vector;
import com.davidbracewell.apollo.linalg.VectorMap;
import com.davidbracewell.collection.counter.Counter;
import com.davidbracewell.guava.common.collect.Maps;
import lombok.NonNull;

import java.io.Serializable;
import java.util.Map;
import java.util.Set;

/**
 * 

Calculates a metric between items, such as distance and similarity.

* * @author David B. Bracewell */ public interface Measure extends Serializable { /** * Calculate this measure using two double arrays as the input * * @param v1 the first double array * @param v2 the second double array * @return the metric result */ default double calculate(@NonNull double[] v1, @NonNull double[] v2) { return calculate(DenseVector.wrap(v1), DenseVector.wrap(v2)); } /** * Calculate this measure using two vectors as the input * * @param v1 the first vector * @param v2 the second vector * @return the metric result */ default double calculate(@NonNull Vector v1, @NonNull Vector v2) { return calculate(VectorMap.wrap(v1), VectorMap.wrap(v2)); } /** * Calculate this measure using two counters as the input * * @param c1 the first counter * @param c2 the second counter * @return the metric result */ default double calculate(@NonNull Counter c1, @NonNull Counter c2) { return calculate(c1.asMap(), c2.asMap()); } /** * Calculate this measure using two sets as the input * * @param c1 the first set * @param c2 the second set * @return the metric result */ default double calculate(@NonNull Set c1, @NonNull Set c2) { return calculate(Maps.asMap(c1, d -> 1), Maps.asMap(c2, d -> 1)); } /** * Calculate this measure using two maps as the input * * @param m1 the first map * @param m2 the second map * @return the metric result */ double calculate(Map m1, Map m2); /** * Gets what kind of optimum should be used with this measure, i.e. is bigger or smaller better. * * @return the optimum */ Optimum getOptimum(); }//END OF Measure




© 2015 - 2025 Weber Informatics LLC | Privacy Policy