com.davidbracewell.apollo.ml.classification.DecisionStump Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of apollo Show documentation
Show all versions of apollo Show documentation
A machine learning library for Java.
The newest version!
/*
* (c) 2005 David B. Bracewell
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.davidbracewell.apollo.ml.classification;
import com.davidbracewell.apollo.Optimum;
import com.davidbracewell.apollo.linear.NDArray;
import lombok.NonNull;
/**
* A decision stump, or Zero-One rule, classifier which makes its classification based on the value of a single
* feature. Acts as weak learner for ensemble techniques like {@link BaggingLearner}
*
* @author David B. Bracewell
*/
public class DecisionStump extends Classifier {
private static final long serialVersionUID = 1L;
int featureId;
double featureValue;
double[] lowerDecision;
double[] upperDecision;
protected DecisionStump(ClassifierLearner learner) {
super(learner);
}
@Override
public Classification classify(@NonNull NDArray vector) {
double[] distribution;
if (vector.get(featureId) > featureValue) {
distribution = upperDecision;
} else {
distribution = lowerDecision;
}
return createResult(distribution);
}
@Override
public String toString() {
String lowerAnswer = decodeLabel(Optimum.MAXIMUM.optimumIndex(lowerDecision)).toString();
String upperAnswer = decodeLabel(Optimum.MAXIMUM.optimumIndex(upperDecision)).toString();
return "DecisionStump: IF(" + decodeFeature(featureId)
+ " > " + featureValue + ") THEN "
+ upperAnswer + " ELSE " + lowerAnswer + "";
}
}//END OF DecisionStump
© 2015 - 2025 Weber Informatics LLC | Privacy Policy