All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.davidbracewell.apollo.ml.clustering.hierarchical.HierarchicalClustering Maven / Gradle / Ivy

The newest version!
/*
 * (c) 2005 David B. Bracewell
 *
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package com.davidbracewell.apollo.ml.clustering.hierarchical;


import com.davidbracewell.apollo.linear.NDArray;
import com.davidbracewell.apollo.stat.measure.Measure;
import com.davidbracewell.apollo.ml.Instance;
import com.davidbracewell.apollo.ml.clustering.Cluster;
import com.davidbracewell.apollo.ml.clustering.Clusterer;
import com.davidbracewell.apollo.ml.clustering.Clustering;
import com.davidbracewell.apollo.ml.clustering.flat.FlatCentroidClustering;
import lombok.NonNull;

import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;

/**
 * 

A clustering for hierarchical clustering techniques where clusters form a tree.

* * @author David B. Bracewell */ public class HierarchicalClustering extends Clustering { private static final long serialVersionUID = 1L; Cluster root; Linkage linkage; public HierarchicalClustering(Clusterer clusterer, Measure measure) { super(clusterer, measure); } /** * Converts the hierarchical clustering into a flat clustering using the given threshold. Each subtree whose * inter-cluster distance is less than the given threshold will be flattened into one cluster. * * @param threshold the threshold to determine how to flatten clusters * @return the flat clustering */ public Clustering asFlat(double threshold) { List flat = new ArrayList<>(); process(root, flat, threshold); FlatCentroidClustering kmeans = new FlatCentroidClustering(this); flat.forEach(kmeans::addCluster); return kmeans; } @Override public Cluster get(int index) { if (index == 0) { return root; } throw new IndexOutOfBoundsException(); } @Override public Cluster getRoot() { return root; } @Override public int hardCluster(@NonNull Instance instance) { return 0; } @Override public boolean isHierarchical() { return true; } @Override public Iterator iterator() { return Collections.singleton(root).iterator(); } private void process(Cluster c, List flat, double threshold) { if (c == null) { return; } if (c.getScore() <= threshold) { flat.add(c); } else { process(c.getLeft(), flat, threshold); process(c.getRight(), flat, threshold); } } @Override public int size() { return 1; } @Override public double[] softCluster(@NonNull Instance instance) { NDArray vector = getPreprocessors().apply(instance).toVector(getEncoderPair()); return new double[]{ linkage.calculate(vector, root, getMeasure()) }; } }//END OF HierarchicalClustering




© 2015 - 2025 Weber Informatics LLC | Privacy Policy