com.davidbracewell.apollo.ml.clustering.topic.DistributedLSATopicModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of apollo Show documentation
Show all versions of apollo Show documentation
A machine learning library for Java.
The newest version!
/*
* (c) 2005 David B. Bracewell
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.davidbracewell.apollo.ml.clustering.topic;
import com.davidbracewell.apollo.linear.Axis;
import com.davidbracewell.apollo.linear.NDArray;
import com.davidbracewell.apollo.linear.NDArrayFactory;
import com.davidbracewell.apollo.ml.clustering.Cluster;
import com.davidbracewell.apollo.ml.clustering.Clusterer;
import com.davidbracewell.apollo.stat.measure.Similarity;
import com.davidbracewell.stream.MStream;
import com.davidbracewell.stream.SparkStream;
import lombok.Getter;
import lombok.Setter;
import org.apache.spark.mllib.linalg.DenseVector;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.distributed.RowMatrix;
import static com.davidbracewell.apollo.linear.SparkLinearAlgebra.sparkSVD;
import static com.davidbracewell.apollo.linear.SparkLinearAlgebra.toMatrix;
/**
* @author David B. Bracewell
*/
public class DistributedLSATopicModel extends Clusterer {
private static final long serialVersionUID = 1L;
@Getter
@Setter
private int K = 100;
@Override
public LSAModel cluster(MStream instances) {
//Create document x word matrix
SparkStream stream = new SparkStream<>(instances.map(i -> (Vector) new DenseVector(i.toArray()))).cache();
RowMatrix mat = new RowMatrix(stream.getRDD().rdd());
//since we have document x word, V is the word x component matrix
// U = document x component, E = singular components, V = word x component
// Transpose V to get component (topics) x words
NDArray topics = toMatrix(sparkSVD(mat, K).V().transpose());
LSAModel model = new LSAModel(this, Similarity.Cosine.asDistanceMeasure(), K);
for (int i = 0; i < K; i++) {
Cluster c = new Cluster();
c.addPoint(NDArrayFactory.wrap(topics.getVector(i, Axis.ROW).toArray()));
model.addCluster(c);
}
return model;
}
@Override
public void resetLearnerParameters() {
}
}//END OF SparkLSA
© 2015 - 2025 Weber Informatics LLC | Privacy Policy