com.davidbracewell.collection.EnhancedDoubleStatistics Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mango Show documentation
Show all versions of mango Show documentation
A set of utilities and tools to speed up and ease programming in Java.
/*
* (c) 2005 David B. Bracewell
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.davidbracewell.collection;
import com.davidbracewell.function.SerializableDoubleConsumer;
import lombok.ToString;
/**
* The type Enhanced double statistics.
*
* @author David B. Bracewell
*/
@ToString(exclude = "sumOfSq")
public final class EnhancedDoubleStatistics implements SerializableDoubleConsumer {
private static final long serialVersionUID = 1L;
private double min = Double.POSITIVE_INFINITY;
private double max = Double.NEGATIVE_INFINITY;
private double sum = 0;
private double sumOfSq = 0;
private int count = 0;
@Override
public void accept(double value) {
min = Math.min(min, value);
max = Math.max(max, value);
sum += value;
sumOfSq += value * value;
count++;
}
public void clear(){
this.min = Double.POSITIVE_INFINITY;
this.max = Double.NEGATIVE_INFINITY;
this.sum = 0;
this.sumOfSq = 0;
this.count = 0;
}
/**
* Combine void.
*
* @param other the other
*/
public void combine(EnhancedDoubleStatistics other) {
count += other.count;
sum += other.sum;
sumOfSq += other.sumOfSq;
min = Math.min(min, other.min);
max = Math.max(max, other.max);
}
/**
* Gets count.
*
* @return the count
*/
public double getCount() {
return count;
}
/**
* Gets sum.
*
* @return the sum
*/
public double getSum() {
return sum;
}
/**
* Gets sum of squares.
*
* @return the sum of squares
*/
public double getSumOfSquares() {
return sumOfSq;
}
/**
* Gets average.
*
* @return the average
*/
public double getAverage() {
return getCount() > 0 ? getSum() / getCount() : 0d;
}
/**
* Gets min.
*
* @return the min
*/
public double getMin() {
return min;
}
/**
* Gets max.
*
* @return the max
*/
public double getMax() {
return max;
}
/**
* Gets sample standard deviation.
*
* @return the sample standard deviation
*/
public double getSampleStandardDeviation() {
if (getCount() <= 1) {
return 0d;
}
return Math.sqrt(getSampleVariance());
}
/**
* Gets sample variance.
*
* @return the sample variance
*/
public double getSampleVariance() {
if (getCount() <= 1) {
return 0d;
}
return Math.abs(getSumOfSquares() - getAverage() * getSum()) / (getCount() - 1);
}
/**
* Gets population standard deviation.
*
* @return the population standard deviation
*/
public double getPopulationStandardDeviation() {
if (getCount() <= 1) {
return 0d;
}
return Math.sqrt(getPopulationVariance());
}
/**
* Gets population variance.
*
* @return the population variance
*/
public double getPopulationVariance() {
if (getCount() <= 1) {
return 0d;
}
return Math.abs(getSumOfSquares() - getAverage() * getSum()) / getCount();
}
}//END OF EnhancedDoubleStatistics
© 2015 - 2025 Weber Informatics LLC | Privacy Policy