All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.hash.SipHashFunction Maven / Gradle / Ivy

The newest version!
/*
 * Original Guava code is copyright (C) 2015 The Guava Authors.
 * Modifications from Guava are copyright (C) 2015 DiffPlug.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.google.common.hash;

import static com.google.common.base.Preconditions.checkArgument;

import java.io.Serializable;
import java.nio.ByteBuffer;

import javax.annotation.Nullable;

/**
 * {@link HashFunction} implementation of SipHash-c-d.
 *
 * @author Kurt Alfred Kluever
 * @author Jean-Philippe Aumasson
 * @author Daniel J. Bernstein
 */
final class SipHashFunction extends AbstractStreamingHashFunction implements Serializable {

	// The number of compression rounds.
	private final int c;
	// The number of finalization rounds.
	private final int d;
	// Two 64-bit keys (represent a single 128-bit key).
	private final long k0;
	private final long k1;

	/**
	 * @param c the number of compression rounds (must be positive)
	 * @param d the number of finalization rounds (must be positive)
	 * @param k0 the first half of the key
	 * @param k1 the second half of the key
	 */
	SipHashFunction(int c, int d, long k0, long k1) {
		checkArgument(
				c > 0, "The number of SipRound iterations (c=%s) during Compression must be positive.", c);
		checkArgument(
				d > 0, "The number of SipRound iterations (d=%s) during Finalization must be positive.", d);
		this.c = c;
		this.d = d;
		this.k0 = k0;
		this.k1 = k1;
	}

	@Override
	public int bits() {
		return 64;
	}

	@Override
	public Hasher newHasher() {
		return new SipHasher(c, d, k0, k1);
	}

	// TODO(kak): Implement and benchmark the hashFoo() shortcuts.

	@Override
	public String toString() {
		return "Hashing.sipHash" + c + "" + d + "(" + k0 + ", " + k1 + ")";
	}

	@Override
	public boolean equals(@Nullable Object object) {
		if (object instanceof SipHashFunction) {
			SipHashFunction other = (SipHashFunction) object;
			return (c == other.c)
					&& (d == other.d)
					&& (k0 == other.k0)
					&& (k1 == other.k1);
		}
		return false;
	}

	@Override
	public int hashCode() {
		return (int) (getClass().hashCode() ^ c ^ d ^ k0 ^ k1);
	}

	private static final class SipHasher extends AbstractStreamingHasher {
		private static final int CHUNK_SIZE = 8;

		// The number of compression rounds.
		private final int c;
		// The number of finalization rounds.
		private final int d;

		// Four 64-bit words of internal state.
		// The initial state corresponds to the ASCII string "somepseudorandomlygeneratedbytes",
		// big-endian encoded. There is nothing special about this value; the only requirement
		// was some asymmetry so that the initial v0 and v1 differ from v2 and v3.
		private long v0 = 0x736f6d6570736575L;
		private long v1 = 0x646f72616e646f6dL;
		private long v2 = 0x6c7967656e657261L;
		private long v3 = 0x7465646279746573L;

		// The number of bytes in the input.
		private long b = 0;

		// The final 64-bit chunk includes the last 0 through 7 bytes of m followed by null bytes
		// and ending with a byte encoding the positive integer b mod 256.
		private long finalM = 0;

		SipHasher(int c, int d, long k0, long k1) {
			super(CHUNK_SIZE);
			this.c = c;
			this.d = d;
			this.v0 ^= k0;
			this.v1 ^= k1;
			this.v2 ^= k0;
			this.v3 ^= k1;
		}

		@Override
		protected void process(ByteBuffer buffer) {
			b += CHUNK_SIZE;
			processM(buffer.getLong());
		}

		@Override
		protected void processRemaining(ByteBuffer buffer) {
			b += buffer.remaining();
			for (int i = 0; buffer.hasRemaining(); i += 8) {
				finalM ^= (buffer.get() & 0xFFL) << i;
			}
		}

		@Override
		public HashCode makeHash() {
			// End with a byte encoding the positive integer b mod 256.
			finalM ^= b << 56;
			processM(finalM);

			// Finalization
			v2 ^= 0xFFL;
			sipRound(d);
			return HashCode.fromLong(v0 ^ v1 ^ v2 ^ v3);
		}

		private void processM(long m) {
			v3 ^= m;
			sipRound(c);
			v0 ^= m;
		}

		private void sipRound(int iterations) {
			for (int i = 0; i < iterations; i++) {
				v0 += v1;
				v2 += v3;
				v1 = Long.rotateLeft(v1, 13);
				v3 = Long.rotateLeft(v3, 16);
				v1 ^= v0;
				v3 ^= v2;
				v0 = Long.rotateLeft(v0, 32);
				v2 += v1;
				v0 += v3;
				v1 = Long.rotateLeft(v1, 17);
				v3 = Long.rotateLeft(v3, 21);
				v1 ^= v2;
				v3 ^= v0;
				v2 = Long.rotateLeft(v2, 32);
			}
		}
	}

	private static final long serialVersionUID = 0L;
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy