com.dimajix.flowman.spec.mapping.UnionMapping.scala Maven / Gradle / Ivy
/*
* Copyright 2018-2022 Kaya Kupferschmidt
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.dimajix.flowman.spec.mapping
import com.fasterxml.jackson.annotation.JsonProperty
import org.apache.spark.sql.DataFrame
import com.dimajix.flowman.execution.Context
import com.dimajix.flowman.execution.Execution
import com.dimajix.flowman.model.BaseMapping
import com.dimajix.flowman.model.Mapping
import com.dimajix.flowman.model.MappingOutputIdentifier
import com.dimajix.flowman.model.Schema
import com.dimajix.flowman.spec.schema.SchemaSpec
import com.dimajix.flowman.transforms.SchemaEnforcer
import com.dimajix.flowman.transforms.UnionTransformer
import com.dimajix.flowman.types.StructType
case class UnionMapping(
instanceProperties:Mapping.Properties,
input:Seq[MappingOutputIdentifier],
schema:Option[Schema],
distinct:Boolean,
filter:Option[String]
) extends BaseMapping {
/**
* Creates the list of required dependencies
*
* @return
*/
override def inputs : Set[MappingOutputIdentifier] = {
input.toSet
}
/**
* Executes this MappingType and returns a corresponding DataFrame
*
* @param execution
* @param tables
* @return
*/
override def execute(execution:Execution, tables:Map[MappingOutputIdentifier,DataFrame]) : Map[String,DataFrame] = {
require(execution != null)
require(tables != null)
val dfs = input.map(tables(_))
// Now create a union of all tables
val union =
if (schema.nonEmpty) {
// Project all tables onto specified schema
val schemaEnforcer = SchemaEnforcer(schema.get.sparkSchema)
val projectedTables = dfs.map(schemaEnforcer.transform)
projectedTables.reduce((l,r) => l.union(r))
}
else {
// Dynamically create common schema
val xfs = UnionTransformer()
xfs.transformDataFrames(dfs)
}
// Optionally perform distinct operation
val result =
if (distinct)
union.distinct()
else
union
// Apply optional filter
val filteredResult = filter.map(result.filter).getOrElse(result)
Map("main" -> filteredResult)
}
override def describe(execution:Execution, input: Map[MappingOutputIdentifier, StructType]): Map[String, StructType] = {
require(execution != null)
require(input != null)
val result =
if (schema.nonEmpty) {
StructType(schema.get.fields)
}
else {
val xfs = UnionTransformer()
val schemas = input.values.toSeq
xfs.transformSchemas(schemas)
}
// Apply documentation
val schemas = Map("main" -> result)
applyDocumentation(schemas)
}
}
class UnionMappingSpec extends MappingSpec {
@JsonProperty(value="inputs", required=true) var inputs:Seq[String] = Seq()
@JsonProperty(value="schema", required=false) var schema:SchemaSpec = _
@JsonProperty(value="distinct", required=false) var distinct:String = "false"
@JsonProperty(value="filter", required=false) private var filter:Option[String] = None
/**
* Creates the instance of the specified Mapping with all variable interpolation being performed
* @param context
* @return
*/
override def instantiate(context: Context): UnionMapping = {
UnionMapping(
instanceProperties(context),
inputs.map(i => MappingOutputIdentifier.parse(context.evaluate(i))),
Option(schema).map(_.instantiate(context)),
context.evaluate(distinct).toBoolean,
context.evaluate(filter)
)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy