commonMain.com.divpundir.mavlink.definitions.common.SetHomePosition.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of definitions-jvm Show documentation
Show all versions of definitions-jvm Show documentation
A modern MAVLink library for the JVM written in Kotlin.
The newest version!
package com.divpundir.mavlink.definitions.common
import com.divpundir.mavlink.api.GeneratedMavField
import com.divpundir.mavlink.api.GeneratedMavMessage
import com.divpundir.mavlink.api.MavMessage
import com.divpundir.mavlink.serialization.MavDataDecoder
import com.divpundir.mavlink.serialization.MavDataEncoder
import com.divpundir.mavlink.serialization.encodeFloat
import com.divpundir.mavlink.serialization.encodeFloatArray
import com.divpundir.mavlink.serialization.encodeInt32
import com.divpundir.mavlink.serialization.encodeUInt64
import com.divpundir.mavlink.serialization.encodeUInt8
import com.divpundir.mavlink.serialization.safeDecodeFloat
import com.divpundir.mavlink.serialization.safeDecodeFloatArray
import com.divpundir.mavlink.serialization.safeDecodeInt32
import com.divpundir.mavlink.serialization.safeDecodeUInt64
import com.divpundir.mavlink.serialization.safeDecodeUInt8
import com.divpundir.mavlink.serialization.truncateZeros
import kotlin.Byte
import kotlin.ByteArray
import kotlin.Deprecated
import kotlin.Float
import kotlin.Int
import kotlin.UByte
import kotlin.UInt
import kotlin.ULong
import kotlin.Unit
import kotlin.collections.List
/**
*
* Sets the home position.
* The home position is the default position that the system will return to and land on.
* The position is set automatically by the system during the takeoff (and may also be set
* using this message).
* The global and local positions encode the position in the respective coordinate frames,
* while the q parameter encodes the orientation of the surface.
* Under normal conditions it describes the heading and terrain slope, which can be used by
* the aircraft to adjust the approach.
* The approach 3D vector describes the point to which the system should fly in normal
* flight mode and then perform a landing sequence along the vector.
* Note: the current home position may be emitted in a HOME_POSITION message on request
* (using MAV_CMD_REQUEST_MESSAGE with param1=242).
*
*
* @param targetSystem System ID.
* @param latitude Latitude (WGS84)
* units = degE7
* @param longitude Longitude (WGS84)
* units = degE7
* @param altitude Altitude (MSL). Positive for up.
* units = mm
* @param x Local X position of this position in the local coordinate frame (NED)
* units = m
* @param y Local Y position of this position in the local coordinate frame (NED)
* units = m
* @param z Local Z position of this position in the local coordinate frame (NED: positive "down")
* units = m
* @param q World to surface normal and heading transformation of the takeoff position. Used to
* indicate the heading and slope of the ground
* @param approachX Local X position of the end of the approach vector. Multicopters should set this
* position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way
* as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the
* takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* units = m
* @param approachY Local Y position of the end of the approach vector. Multicopters should set this
* position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way
* as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the
* takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* units = m
* @param approachZ Local Z position of the end of the approach vector. Multicopters should set this
* position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way
* as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the
* takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* units = m
* @param timeUsec Timestamp (UNIX Epoch time or time since system boot). The receiving end can
* infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the
* number.
* units = us
*/
@Deprecated(message =
"The command protocol version (MAV_CMD_DO_SET_HOME) allows a GCS to detect when setting the home position has failed.")
@GeneratedMavMessage(
id = 243u,
crcExtra = 85,
)
public data class SetHomePosition(
/**
* System ID.
*/
@GeneratedMavField(type = "uint8_t")
public val targetSystem: UByte = 0u,
/**
* Latitude (WGS84)
* units = degE7
*/
@GeneratedMavField(type = "int32_t")
public val latitude: Int = 0,
/**
* Longitude (WGS84)
* units = degE7
*/
@GeneratedMavField(type = "int32_t")
public val longitude: Int = 0,
/**
* Altitude (MSL). Positive for up.
* units = mm
*/
@GeneratedMavField(type = "int32_t")
public val altitude: Int = 0,
/**
* Local X position of this position in the local coordinate frame (NED)
* units = m
*/
@GeneratedMavField(type = "float")
public val x: Float = 0F,
/**
* Local Y position of this position in the local coordinate frame (NED)
* units = m
*/
@GeneratedMavField(type = "float")
public val y: Float = 0F,
/**
* Local Z position of this position in the local coordinate frame (NED: positive "down")
* units = m
*/
@GeneratedMavField(type = "float")
public val z: Float = 0F,
/**
* World to surface normal and heading transformation of the takeoff position. Used to indicate
* the heading and slope of the ground
*/
@GeneratedMavField(type = "float[4]")
public val q: List = emptyList(),
/**
* Local X position of the end of the approach vector. Multicopters should set this position based
* on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as
* multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the
* takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* units = m
*/
@GeneratedMavField(type = "float")
public val approachX: Float = 0F,
/**
* Local Y position of the end of the approach vector. Multicopters should set this position based
* on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as
* multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the
* takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* units = m
*/
@GeneratedMavField(type = "float")
public val approachY: Float = 0F,
/**
* Local Z position of the end of the approach vector. Multicopters should set this position based
* on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as
* multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the
* takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* units = m
*/
@GeneratedMavField(type = "float")
public val approachZ: Float = 0F,
/**
* Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp
* format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.
* units = us
*/
@GeneratedMavField(
type = "uint64_t",
extension = true,
)
public val timeUsec: ULong = 0uL,
) : MavMessage {
override val instanceCompanion: MavMessage.MavCompanion = Companion
override fun serializeV1(): ByteArray {
val encoder = MavDataEncoder(SIZE_V1)
encoder.encodeInt32(latitude)
encoder.encodeInt32(longitude)
encoder.encodeInt32(altitude)
encoder.encodeFloat(x)
encoder.encodeFloat(y)
encoder.encodeFloat(z)
encoder.encodeFloatArray(q, 16)
encoder.encodeFloat(approachX)
encoder.encodeFloat(approachY)
encoder.encodeFloat(approachZ)
encoder.encodeUInt8(targetSystem)
return encoder.bytes
}
override fun serializeV2(): ByteArray {
val encoder = MavDataEncoder(SIZE_V2)
encoder.encodeInt32(latitude)
encoder.encodeInt32(longitude)
encoder.encodeInt32(altitude)
encoder.encodeFloat(x)
encoder.encodeFloat(y)
encoder.encodeFloat(z)
encoder.encodeFloatArray(q, 16)
encoder.encodeFloat(approachX)
encoder.encodeFloat(approachY)
encoder.encodeFloat(approachZ)
encoder.encodeUInt8(targetSystem)
encoder.encodeUInt64(timeUsec)
return encoder.bytes.truncateZeros()
}
public companion object : MavMessage.MavCompanion {
private const val SIZE_V1: Int = 53
private const val SIZE_V2: Int = 61
override val id: UInt = 243u
override val crcExtra: Byte = 85
override fun deserialize(bytes: ByteArray): SetHomePosition {
val decoder = MavDataDecoder(bytes)
val latitude = decoder.safeDecodeInt32()
val longitude = decoder.safeDecodeInt32()
val altitude = decoder.safeDecodeInt32()
val x = decoder.safeDecodeFloat()
val y = decoder.safeDecodeFloat()
val z = decoder.safeDecodeFloat()
val q = decoder.safeDecodeFloatArray(16)
val approachX = decoder.safeDecodeFloat()
val approachY = decoder.safeDecodeFloat()
val approachZ = decoder.safeDecodeFloat()
val targetSystem = decoder.safeDecodeUInt8()
val timeUsec = decoder.safeDecodeUInt64()
return SetHomePosition(
targetSystem = targetSystem,
latitude = latitude,
longitude = longitude,
altitude = altitude,
x = x,
y = y,
z = z,
q = q,
approachX = approachX,
approachY = approachY,
approachZ = approachZ,
timeUsec = timeUsec,
)
}
public operator fun invoke(builderAction: Builder.() -> Unit): SetHomePosition =
Builder().apply(builderAction).build()
}
public class Builder {
public var targetSystem: UByte = 0u
public var latitude: Int = 0
public var longitude: Int = 0
public var altitude: Int = 0
public var x: Float = 0F
public var y: Float = 0F
public var z: Float = 0F
public var q: List = emptyList()
public var approachX: Float = 0F
public var approachY: Float = 0F
public var approachZ: Float = 0F
public var timeUsec: ULong = 0uL
public fun build(): SetHomePosition = SetHomePosition(
targetSystem = targetSystem,
latitude = latitude,
longitude = longitude,
altitude = altitude,
x = x,
y = y,
z = z,
q = q,
approachX = approachX,
approachY = approachY,
approachZ = approachZ,
timeUsec = timeUsec,
)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy