java.nio.FloatBuffer Maven / Gradle / Ivy
Show all versions of dragome-js-jre Show documentation
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package java.nio;
/** A buffer of floats.
*
* A float buffer can be created in either of the following ways:
*
*
* - {@link #allocate(int) Allocate} a new float array and create a buffer based on it;
* - {@link #wrap(float[]) Wrap} an existing float array to create a new buffer;
* - Use {@link java.nio.ByteBuffer#asFloatBuffer() ByteBuffer.asFloatBuffer} to create a float buffer based on a byte buffer.
*
*
* @since Android 1.0 */
public abstract class FloatBuffer extends Buffer implements Comparable {
/** Creates a float buffer based on a newly allocated float array.
*
* @param capacity the capacity of the new buffer.
* @return the created float buffer.
* @throws IllegalArgumentException if {@code capacity} is less than zero.
* @since Android 1.0 */
public static FloatBuffer allocate (int capacity) {
if (capacity < 0) {
throw new IllegalArgumentException();
}
return BufferFactory.newFloatBuffer(capacity);
}
/** Creates a new float buffer by wrapping the given float array.
*
* Calling this method has the same effect as {@code wrap(array, 0, array.length)}.
*
*
* @param array the float array which the new buffer will be based on.
* @return the created float buffer.
* @since Android 1.0 */
public static FloatBuffer wrap (float[] array) {
return wrap(array, 0, array.length);
}
/** Creates a new float buffer by wrapping the given float array.
*
* The new buffer's position will be {@code start}, limit will be {@code start + len}, capacity will be the length of the array.
*
*
* @param array the float array which the new buffer will be based on.
* @param start the start index, must not be negative and not greater than {@code array.length}.
* @param len the length, must not be negative and not greater than {@code array.length - start}.
* @return the created float buffer.
* @exception IndexOutOfBoundsException if either {@code start} or {@code len} is invalid.
* @exception NullPointerException if {@code array} is null.
* @since Android 1.0 */
public static FloatBuffer wrap (float[] array, int start, int len) {
if (array == null) {
throw new NullPointerException();
}
if (start < 0 || len < 0 || (long)start + (long)len > array.length) {
throw new IndexOutOfBoundsException();
}
FloatBuffer buf = BufferFactory.newFloatBuffer(array);
buf.position = start;
buf.limit = start + len;
return buf;
}
/** Constructs a {@code FloatBuffer} with given capacity.
*
* @param capacity The capacity of the buffer */
FloatBuffer (int capacity) {
super(capacity);
}
/** Returns the float array which this buffer is based on, if there is one.
*
* @return the float array which this buffer is based on.
* @exception ReadOnlyBufferException if this buffer is based on an array, but it is read-only.
* @exception UnsupportedOperationException if this buffer is not based on an array.
* @since Android 1.0 */
public final float[] array () {
return protectedArray();
}
/** Returns the offset of the float array which this buffer is based on, if there is one.
*
* The offset is the index of the array and corresponds to the zero position of the buffer.
*
*
* @return the offset of the float array which this buffer is based on.
* @exception ReadOnlyBufferException if this buffer is based on an array, but it is read-only.
* @exception UnsupportedOperationException if this buffer is not based on an array.
* @since Android 1.0 */
public final int arrayOffset () {
return protectedArrayOffset();
}
/** Returns a read-only buffer that shares its content with this buffer.
*
* The returned buffer is guaranteed to be a new instance, even if this buffer is read-only itself. The new buffer's position,
* limit, capacity and mark are the same as this buffer.
*
*
* The new buffer shares its content with this buffer, which means this buffer's change of content will be visible to the new
* buffer. The two buffer's position, limit and mark are independent.
*
*
* @return a read-only version of this buffer.
* @since Android 1.0 */
public abstract FloatBuffer asReadOnlyBuffer ();
/** Compacts this float buffer.
*
* The remaining floats will be moved to the head of the buffer, starting from position zero. Then the position is set to
* {@code remaining()}; the limit is set to capacity; the mark is cleared.
*
*
* @return this buffer.
* @exception ReadOnlyBufferException if no changes may be made to the contents of this buffer.
* @since Android 1.0 */
public abstract FloatBuffer compact ();
/** Compare the remaining floats of this buffer to another float buffer's remaining floats.
*
* @param otherBuffer another float buffer.
* @return a negative value if this is less than {@code otherBuffer}; 0 if this equals to {@code otherBuffer}; a positive value
* if this is greater than {@code otherBuffer}.
* @exception ClassCastException if {@code otherBuffer} is not a float buffer.
* @since Android 1.0 */
public int compareTo (FloatBuffer otherBuffer) {
int compareRemaining = (remaining() < otherBuffer.remaining()) ? remaining() : otherBuffer.remaining();
int thisPos = position;
int otherPos = otherBuffer.position;
// BEGIN android-changed
float thisFloat, otherFloat;
while (compareRemaining > 0) {
thisFloat = get(thisPos);
otherFloat = otherBuffer.get(otherPos);
// checks for float and NaN inequality
if ((thisFloat != otherFloat) && ((thisFloat == thisFloat) || (otherFloat == otherFloat))) {
return thisFloat < otherFloat ? -1 : 1;
}
thisPos++;
otherPos++;
compareRemaining--;
}
// END android-changed
return remaining() - otherBuffer.remaining();
}
/** Returns a duplicated buffer that shares its content with this buffer.
*
* The duplicated buffer's position, limit, capacity and mark are the same as this buffer. The duplicated buffer's read-only
* property and byte order are same as this buffer too.
*
*
* The new buffer shares its content with this buffer, which means either buffer's change of content will be visible to the
* other. The two buffer's position, limit and mark are independent.
*
*
* @return a duplicated buffer that shares its content with this buffer.
* @since Android 1.0 */
public abstract FloatBuffer duplicate ();
/** Checks whether this float buffer is equal to another object.
*
* If {@code other} is not a float buffer then {@code false} is returned. Two float buffers are equal if and only if their
* remaining floats are exactly the same. Position, limit, capacity and mark are not considered.
*
*
* @param other the object to compare with this float buffer.
* @return {@code true} if this float buffer is equal to {@code other}, {@code false} otherwise.
* @since Android 1.0 */
public boolean equals (Object other) {
if (!(other instanceof FloatBuffer)) {
return false;
}
FloatBuffer otherBuffer = (FloatBuffer)other;
if (remaining() != otherBuffer.remaining()) {
return false;
}
int myPosition = position;
int otherPosition = otherBuffer.position;
boolean equalSoFar = true;
while (equalSoFar && (myPosition < limit)) {
equalSoFar = get(myPosition++) == otherBuffer.get(otherPosition++);
}
return equalSoFar;
}
/** Returns the float at the current position and increases the position by 1.
*
* @return the float at the current position.
* @exception BufferUnderflowException if the position is equal or greater than limit.
* @since Android 1.0 */
public abstract float get ();
/** Reads floats from the current position into the specified float array and increases the position by the number of floats
* read.
*
* Calling this method has the same effect as {@code get(dest, 0, dest.length)}.
*
*
* @param dest the destination float array.
* @return this buffer.
* @exception BufferUnderflowException if {@code dest.length} is greater than {@code remaining()}.
* @since Android 1.0 */
public FloatBuffer get (float[] dest) {
return get(dest, 0, dest.length);
}
/** Reads floats from the current position into the specified float array, starting from the specified offset, and increases the
* position by the number of floats read.
*
* @param dest the target float array.
* @param off the offset of the float array, must not be negative and no greater than {@code dest.length}.
* @param len the number of floats to read, must be no less than zero and no greater than {@code dest.length - off}.
* @return this buffer.
* @exception IndexOutOfBoundsException if either {@code off} or {@code len} is invalid.
* @exception BufferUnderflowException if {@code len} is greater than {@code remaining()}.
* @since Android 1.0 */
public FloatBuffer get (float[] dest, int off, int len) {
int length = dest.length;
if (off < 0 || len < 0 || (long)off + (long)len > length) {
throw new IndexOutOfBoundsException();
}
if (len > remaining()) {
throw new BufferUnderflowException();
}
for (int i = off; i < off + len; i++) {
dest[i] = get();
}
return this;
}
/** Returns a float at the specified index; the position is not changed.
*
* @param index the index, must not be negative and less than limit.
* @return a float at the specified index.
* @exception IndexOutOfBoundsException if index is invalid.
* @since Android 1.0 */
public abstract float get (int index);
/** Indicates whether this buffer is based on a float array and is read/write.
*
* @return {@code true} if this buffer is based on a float array and provides read/write access, {@code false} otherwise.
* @since Android 1.0 */
public final boolean hasArray () {
return protectedHasArray();
}
// /**
// * Calculates this buffer's hash code from the remaining chars. The
// * position, limit, capacity and mark don't affect the hash code.
// *
// * @return the hash code calculated from the remaining floats.
// * @since Android 1.0
// */
// public int hashCode() {
// int myPosition = position;
// int hash = 0;
// while (myPosition < limit) {
// hash = hash + Float.floatToIntBits(get(myPosition++));
// }
// return hash;
// }
/** Indicates whether this buffer is direct. A direct buffer will try its best to take advantage of native memory APIs and it
* may not stay in the Java heap, so it is not affected by garbage collection.
*
* A float buffer is direct if it is based on a byte buffer and the byte buffer is direct.
*
*
* @return {@code true} if this buffer is direct, {@code false} otherwise.
* @since Android 1.0 */
public abstract boolean isDirect ();
/** Returns the byte order used by this buffer when converting floats from/to bytes.
*
* If this buffer is not based on a byte buffer, then always return the platform's native byte order.
*
*
* @return the byte order used by this buffer when converting floats from/to bytes.
* @since Android 1.0 */
public abstract ByteOrder order ();
/** Child class implements this method to realize {@code array()}.
*
* @return see {@code array()} */
abstract float[] protectedArray ();
/** Child class implements this method to realize {@code arrayOffset()}.
*
* @return see {@code arrayOffset()} */
abstract int protectedArrayOffset ();
/** Child class implements this method to realize {@code hasArray()}.
*
* @return see {@code hasArray()} */
abstract boolean protectedHasArray ();
/** Writes the given float to the current position and increases the position by 1.
*
* @param f the float to write.
* @return this buffer.
* @exception BufferOverflowException if position is equal or greater than limit.
* @exception ReadOnlyBufferException if no changes may be made to the contents of this buffer.
* @since Android 1.0 */
public abstract FloatBuffer put (float f);
/** Writes floats from the given float array to the current position and increases the position by the number of floats written.
*
* Calling this method has the same effect as {@code put(src, 0, src.length)}.
*
*
* @param src the source float array.
* @return this buffer.
* @exception BufferOverflowException if {@code remaining()} is less than {@code src.length}.
* @exception ReadOnlyBufferException if no changes may be made to the contents of this buffer.
* @since Android 1.0 */
public final FloatBuffer put (float[] src) {
return put(src, 0, src.length);
}
/** Writes floats from the given float array, starting from the specified offset, to the current position and increases the
* position by the number of floats written.
*
* @param src the source float array.
* @param off the offset of float array, must not be negative and not greater than {@code src.length}.
* @param len the number of floats to write, must be no less than zero and no greater than {@code src.length - off}.
* @return this buffer.
* @exception BufferOverflowException if {@code remaining()} is less than {@code len}.
* @exception IndexOutOfBoundsException if either {@code off} or {@code len} is invalid.
* @exception ReadOnlyBufferException if no changes may be made to the contents of this buffer.
* @since Android 1.0 */
public FloatBuffer put (float[] src, int off, int len) {
int length = src.length;
if (off < 0 || len < 0 || (long)off + (long)len > length) {
throw new IndexOutOfBoundsException();
}
if (len > remaining()) {
throw new BufferOverflowException();
}
for (int i = off; i < off + len; i++) {
put(src[i]);
}
return this;
}
/** Writes all the remaining floats of the {@code src} float buffer to this buffer's current position, and increases both
* buffers' position by the number of floats copied.
*
* @param src the source float buffer.
* @return this buffer.
* @exception BufferOverflowException if {@code src.remaining()} is greater than this buffer's {@code remaining()}.
* @exception IllegalArgumentException if {@code src} is this buffer.
* @exception ReadOnlyBufferException if no changes may be made to the contents of this buffer.
* @since Android 1.0 */
public FloatBuffer put (FloatBuffer src) {
if (src == this) {
throw new IllegalArgumentException();
}
if (src.remaining() > remaining()) {
throw new BufferOverflowException();
}
float[] contents = new float[src.remaining()];
src.get(contents);
put(contents);
return this;
}
/** Writes a float to the specified index of this buffer; the position is not changed.
*
* @param index the index, must not be negative and less than the limit.
* @param f the float to write.
* @return this buffer.
* @exception IndexOutOfBoundsException if index is invalid.
* @exception ReadOnlyBufferException if no changes may be made to the contents of this buffer.
* @since Android 1.0 */
public abstract FloatBuffer put (int index, float f);
/** Returns a sliced buffer that shares its content with this buffer.
*
* The sliced buffer's capacity will be this buffer's {@code remaining()}, and its zero position will correspond to this
* buffer's current position. The new buffer's position will be 0, limit will be its capacity, and its mark is cleared. The new
* buffer's read-only property and byte order are same as this buffer's.
*
*
* The new buffer shares its content with this buffer, which means either buffer's change of content will be visible to the
* other. The two buffer's position, limit and mark are independent.
*
*
* @return a sliced buffer that shares its content with this buffer.
* @since Android 1.0 */
public abstract FloatBuffer slice ();
/** Returns a string representing the state of this float buffer.
*
* @return a string representing the state of this float buffer.
* @since Android 1.0 */
public String toString () {
StringBuffer buf = new StringBuffer();
buf.append(getClass().getName());
buf.append(", status: capacity="); //$NON-NLS-1$
buf.append(capacity());
buf.append(" position="); //$NON-NLS-1$
buf.append(position());
buf.append(" limit="); //$NON-NLS-1$
buf.append(limit());
return buf.toString();
}
}