All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.fasterxml.jackson.core.JsonParser Maven / Gradle / Ivy

The newest version!
/* Jackson JSON-processor.
 *
 * Copyright (c) 2007- Tatu Saloranta, [email protected]
 */

package com.fasterxml.jackson.core;

import java.io.*;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.Iterator;

import com.fasterxml.jackson.core.type.TypeReference;

/**
 * Base class that defines public API for reading JSON content.
 * Instances are created using factory methods of
 * a {@link JsonFactory} instance.
 *
 * @author Tatu Saloranta
 */
public abstract class JsonParser
    implements Closeable, Versioned
{
    private final static int MIN_BYTE_I = (int) Byte.MIN_VALUE;
    // as per [JACKSON-804], allow range up to and including 255
    private final static int MAX_BYTE_I = (int) 255;

    private final static int MIN_SHORT_I = (int) Short.MIN_VALUE;
    private final static int MAX_SHORT_I = (int) Short.MAX_VALUE;

    /**
     * Enumeration of possible "native" (optimal) types that can be
     * used for numbers.
     */
    public enum NumberType {
        INT, LONG, BIG_INTEGER, FLOAT, DOUBLE, BIG_DECIMAL
    };

    /**
     * Enumeration that defines all on/off features for parsers.
     */
    public enum Feature {
        
        // // // Low-level I/O handling features:
        
        /**
         * Feature that determines whether parser will automatically
         * close underlying input source that is NOT owned by the
         * parser. If disabled, calling application has to separately
         * close the underlying {@link InputStream} and {@link Reader}
         * instances used to create the parser. If enabled, parser
         * will handle closing, as long as parser itself gets closed:
         * this happens when end-of-input is encountered, or parser
         * is closed by a call to {@link JsonParser#close}.
         *

* Feature is enabled by default. */ AUTO_CLOSE_SOURCE(true), // // // Support for non-standard data format constructs /** * Feature that determines whether parser will allow use * of Java/C++ style comments (both '/'+'*' and * '//' varieties) within parsed content or not. *

* Since JSON specification does not mention comments as legal * construct, * this is a non-standard feature; however, in the wild * this is extensively used. As such, feature is * disabled by default for parsers and must be * explicitly enabled. */ ALLOW_COMMENTS(false), /** * Feature that determines whether parser will allow use * of YAML comments, ones starting with '#' and continuing * until the end of the line. This commenting style is common * with scripting languages as well. *

* Since JSON specification does not mention comments as legal * construct, * this is a non-standard feature. As such, feature is * disabled by default for parsers and must be * explicitly enabled. */ ALLOW_YAML_COMMENTS(false), /** * Feature that determines whether parser will allow use * of unquoted field names (which is allowed by Javascript, * but not by JSON specification). *

* Since JSON specification requires use of double quotes for * field names, * this is a non-standard feature, and as such disabled by default. */ ALLOW_UNQUOTED_FIELD_NAMES(false), /** * Feature that determines whether parser will allow use * of single quotes (apostrophe, character '\'') for * quoting Strings (names and String values). If so, * this is in addition to other acceptabl markers. * but not by JSON specification). *

* Since JSON specification requires use of double quotes for * field names, * this is a non-standard feature, and as such disabled by default. */ ALLOW_SINGLE_QUOTES(false), /** * Feature that determines whether parser will allow * JSON Strings to contain unquoted control characters * (ASCII characters with value less than 32, including * tab and line feed characters) or not. * If feature is set false, an exception is thrown if such a * character is encountered. *

* Since JSON specification requires quoting for all control characters, * this is a non-standard feature, and as such disabled by default. */ ALLOW_UNQUOTED_CONTROL_CHARS(false), /** * Feature that can be enabled to accept quoting of all character * using backslash qooting mechanism: if not enabled, only characters * that are explicitly listed by JSON specification can be thus * escaped (see JSON spec for small list of these characters) *

* Since JSON specification requires quoting for all control characters, * this is a non-standard feature, and as such disabled by default. */ ALLOW_BACKSLASH_ESCAPING_ANY_CHARACTER(false), /** * Feature that determines whether parser will allow * JSON integral numbers to start with additional (ignorable) * zeroes (like: 000001). If enabled, no exception is thrown, and extra * nulls are silently ignored (and not included in textual representation * exposed via {@link JsonParser#getText}). *

* Since JSON specification does not allow leading zeroes, * this is a non-standard feature, and as such disabled by default. */ ALLOW_NUMERIC_LEADING_ZEROS(false), /** * Feature that allows parser to recognize set of * "Not-a-Number" (NaN) tokens as legal floating number * values (similar to how many other data formats and * programming language source code allows it). * Specific subset contains values that * XML Schema * (see section 3.2.4.1, Lexical Representation) * allows (tokens are quoted contents, not including quotes): *

    *
  • "INF" (for positive infinity), as well as alias of "Infinity" *
  • "-INF" (for negative infinity), alias "-Infinity" *
  • "NaN" (for other not-a-numbers, like result of division by zero) *
*

* Since JSON specification does not allow use of such values, * this is a non-standard feature, and as such disabled by default. */ ALLOW_NON_NUMERIC_NUMBERS(false), /** * Feature that determines whether {@link JsonParser} will explicitly * check that no duplicate JSON Object field names are encountered. * If enabled, parser will check all names within context and report * duplicates by throwing a {@link JsonParseException}; if disabled, * parser will not do such checking. Assumption in latter case is * that caller takes care of handling duplicates at a higher level: * data-binding, for example, has features to specify detection to * be done there. *

* Note that enabling this feature will incur performance overhead * due to having to store and check additional information: this typically * adds 20-30% to execution time for basic parsing. * * @since 2.3 */ STRICT_DUPLICATE_DETECTION(false), ; /** * Whether feature is enabled or disabled by default. */ private final boolean _defaultState; private final int _mask; /** * Method that calculates bit set (flags) of all features that * are enabled by default. */ public static int collectDefaults() { int flags = 0; for (Feature f : values()) { if (f.enabledByDefault()) { flags |= f.getMask(); } } return flags; } private Feature(boolean defaultState) { _mask = (1 << ordinal()); _defaultState = defaultState; } public boolean enabledByDefault() { return _defaultState; } /** * @since 2.3 */ public boolean enabledIn(int flags) { return (flags & _mask) != 0; } public int getMask() { return (1 << ordinal()); } } /* /********************************************************** /* Minimal configuration state /********************************************************** */ /** * Bit flag composed of bits that indicate which * {@link com.fasterxml.jackson.core.JsonParser.Feature}s * are enabled. */ protected int _features; /* /********************************************************** /* Construction, configuration, initialization /********************************************************** */ protected JsonParser() { } protected JsonParser(int features) { _features = features; } /** * Accessor for {@link ObjectCodec} associated with this * parser, if any. Codec is used by {@link #readValueAs(Class)} * method (and its variants). */ public abstract ObjectCodec getCodec(); /** * Setter that allows defining {@link ObjectCodec} associated with this * parser, if any. Codec is used by {@link #readValueAs(Class)} * method (and its variants). */ public abstract void setCodec(ObjectCodec c); /** * Method that can be used to get access to object that is used * to access input being parsed; this is usually either * {@link InputStream} or {@link Reader}, depending on what * parser was constructed with. * Note that returned value may be null in some cases; including * case where parser implementation does not want to exposed raw * source to caller. * In cases where input has been decorated, object returned here * is the decorated version; this allows some level of interaction * between users of parser and decorator object. *

* In general use of this accessor should be considered as * "last effort", i.e. only used if no other mechanism is applicable. */ public Object getInputSource() { return null; } /* /********************************************************** /* Format support /********************************************************** */ /** * Method to call to make this parser use specified schema. Method must * be called before trying to parse any content, right after parser instance * has been created. * Note that not all parsers support schemas; and those that do usually only * accept specific types of schemas: ones defined for data format parser can read. *

* If parser does not support specified schema, {@link UnsupportedOperationException} * is thrown. * * @param schema Schema to use * * @throws UnsupportedOperationException if parser does not support schema */ public void setSchema(FormatSchema schema) { throw new UnsupportedOperationException("Parser of type "+getClass().getName()+" does not support schema of type '" +schema.getSchemaType()+"'"); } /** * Method for accessing Schema that this parser uses, if any. * Default implementation returns null. * * @since 2.1 */ public FormatSchema getSchema() { return null; } /** * Method that can be used to verify that given schema can be used with * this parser (using {@link #setSchema}). * * @param schema Schema to check * * @return True if this parser can use given schema; false if not */ public boolean canUseSchema(FormatSchema schema) { return false; } /* /********************************************************** /* Capability introspection /********************************************************** */ /** * Method that can be called to determine if a custom * {@link ObjectCodec} is needed for binding data parsed * using {@link JsonParser} constructed by this factory * (which typically also implies the same for serialization * with {@link JsonGenerator}). * * @return True if custom codec is needed with parsers and * generators created by this factory; false if a general * {@link ObjectCodec} is enough * * @since 2.1 */ public boolean requiresCustomCodec() { return false;} /* /********************************************************** /* Versioned /********************************************************** */ /** * Accessor for getting version of the core package, given a parser instance. * Left for sub-classes to implement. */ @Override public abstract Version version(); /* /********************************************************** /* Closeable implementation /********************************************************** */ /** * Closes the parser so that no further iteration or data access * can be made; will also close the underlying input source * if parser either owns the input source, or feature * {@link Feature#AUTO_CLOSE_SOURCE} is enabled. * Whether parser owns the input source depends on factory * method that was used to construct instance (so check * {@link com.fasterxml.jackson.core.JsonFactory} for details, * but the general * idea is that if caller passes in closable resource (such * as {@link InputStream} or {@link Reader}) parser does NOT * own the source; but if it passes a reference (such as * {@link java.io.File} or {@link java.net.URL} and creates * stream or reader it does own them. */ @Override public abstract void close() throws IOException; /* /********************************************************** /* Buffer handling /********************************************************** */ /** * Method that can be called to push back any content that * has been read but not consumed by the parser. This is usually * done after reading all content of interest using parser. * Content is released by writing it to given stream if possible; * if underlying input is byte-based it can released, if not (char-based) * it can not. * * @return -1 if the underlying content source is not byte based * (that is, input can not be sent to {@link OutputStream}; * otherwise number of bytes released (0 if there was nothing to release) * * @throws IOException if write to stream threw exception */ public int releaseBuffered(OutputStream out) throws IOException { return -1; } /** * Method that can be called to push back any content that * has been read but not consumed by the parser. * This is usually * done after reading all content of interest using parser. * Content is released by writing it to given writer if possible; * if underlying input is char-based it can released, if not (byte-based) * it can not. * * @return -1 if the underlying content source is not char-based * (that is, input can not be sent to {@link Writer}; * otherwise number of chars released (0 if there was nothing to release) * * @throws IOException if write using Writer threw exception */ public int releaseBuffered(Writer w) throws IOException { return -1; } /* /*************************************************** /* Public API, configuration /*************************************************** */ /** * Method for enabling specified parser feature * (check {@link Feature} for list of features) */ public JsonParser enable(Feature f) { _features |= f.getMask(); return this; } /** * Method for disabling specified feature * (check {@link Feature} for list of features) */ public JsonParser disable(Feature f) { _features &= ~f.getMask(); return this; } /** * Method for enabling or disabling specified feature * (check {@link Feature} for list of features) */ public JsonParser configure(Feature f, boolean state) { if (state) enable(f); else disable(f); return this; } /** * Method for checking whether specified {@link Feature} is enabled. */ public boolean isEnabled(Feature f) { return (_features & f.getMask()) != 0; } /** * Bulk access method for getting state of all standard {@link Feature}s. * * @return Bit mask that defines current states of all standard {@link Feature}s. * * @since 2.3 */ public int getFeatureMask() { return _features; } /** * Bulk set method for (re)settting states of all standard {@link Feature}s * * @since 2.3 * * @return This parser object, to allow chaining of calls */ public JsonParser setFeatureMask(int mask) { _features = mask; return this; } /* /********************************************************** /* Public API, traversal /********************************************************** */ /** * Main iteration method, which will advance stream enough * to determine type of the next token, if any. If none * remaining (stream has no content other than possible * white space before ending), null will be returned. * * @return Next token from the stream, if any found, or null * to indicate end-of-input */ public abstract JsonToken nextToken() throws IOException, JsonParseException; /** * Iteration method that will advance stream enough * to determine type of the next token that is a value type * (including JSON Array and Object start/end markers). * Or put another way, nextToken() will be called once, * and if {@link JsonToken#FIELD_NAME} is returned, another * time to get the value for the field. * Method is most useful for iterating over value entries * of JSON objects; field name will still be available * by calling {@link #getCurrentName} when parser points to * the value. * * @return Next non-field-name token from the stream, if any found, * or null to indicate end-of-input (or, for non-blocking * parsers, {@link JsonToken#NOT_AVAILABLE} if no tokens were * available yet) */ public abstract JsonToken nextValue() throws IOException, JsonParseException; /** * Method that fetches next token (as if calling {@link #nextToken}) and * verifies whether it is {@link JsonToken#FIELD_NAME} with specified name * and returns result of that comparison. * It is functionally equivalent to: *

     *  return (nextToken() == JsonToken.FIELD_NAME) && str.getValue().equals(getCurrentName());
     *
* but may be faster for parser to verify, and can therefore be used if caller * expects to get such a property name from input next. * * @param str Property name to compare next token to (if next token is JsonToken.FIELD_NAME) */ public boolean nextFieldName(SerializableString str) throws IOException, JsonParseException { return (nextToken() == JsonToken.FIELD_NAME) && str.getValue().equals(getCurrentName()); } /** * Method that fetches next token (as if calling {@link #nextToken}) and * if it is {@link JsonToken#VALUE_STRING} returns contained String value; * otherwise returns null. * It is functionally equivalent to: *
     *  return (nextToken() == JsonToken.VALUE_STRING) ? getText() : null;
     *
* but may be faster for parser to process, and can therefore be used if caller * expects to get a String value next from input. */ public String nextTextValue() throws IOException, JsonParseException { return (nextToken() == JsonToken.VALUE_STRING) ? getText() : null; } /** * Method that fetches next token (as if calling {@link #nextToken}) and * if it is {@link JsonToken#VALUE_NUMBER_INT} returns 32-bit int value; * otherwise returns specified default value * It is functionally equivalent to: *
     *  return (nextToken() == JsonToken.VALUE_NUMBER_INT) ? getIntValue() : defaultValue;
     *
* but may be faster for parser to process, and can therefore be used if caller * expects to get a String value next from input. */ public int nextIntValue(int defaultValue) throws IOException, JsonParseException { return (nextToken() == JsonToken.VALUE_NUMBER_INT) ? getIntValue() : defaultValue; } /** * Method that fetches next token (as if calling {@link #nextToken}) and * if it is {@link JsonToken#VALUE_NUMBER_INT} returns 64-bit long value; * otherwise returns specified default value * It is functionally equivalent to: *
     *  return (nextToken() == JsonToken.VALUE_NUMBER_INT) ? getLongValue() : defaultValue;
     *
* but may be faster for parser to process, and can therefore be used if caller * expects to get a String value next from input. */ public long nextLongValue(long defaultValue) throws IOException, JsonParseException { return (nextToken() == JsonToken.VALUE_NUMBER_INT) ? getLongValue() : defaultValue; } /** * Method that fetches next token (as if calling {@link #nextToken}) and * if it is {@link JsonToken#VALUE_TRUE} or {@link JsonToken#VALUE_FALSE} * returns matching Boolean value; otherwise return null. * It is functionally equivalent to: *
     *  JsonToken t = nextToken();
     *  if (t == JsonToken.VALUE_TRUE) return Boolean.TRUE;
     *  if (t == JsonToken.VALUE_FALSE) return Boolean.FALSE;
     *  return null;
     *
* but may be faster for parser to process, and can therefore be used if caller * expects to get a String value next from input. */ public Boolean nextBooleanValue() throws IOException, JsonParseException { JsonToken t = nextToken(); if (t == JsonToken.VALUE_TRUE) { return Boolean.TRUE; } if (t == JsonToken.VALUE_FALSE) { return Boolean.FALSE; } return null; } /** * Method that will skip all child tokens of an array or * object token that the parser currently points to, * iff stream points to * {@link JsonToken#START_OBJECT} or {@link JsonToken#START_ARRAY}. * If not, it will do nothing. * After skipping, stream will point to matching * {@link JsonToken#END_OBJECT} or {@link JsonToken#END_ARRAY} * (possibly skipping nested pairs of START/END OBJECT/ARRAY tokens * as well as value tokens). * The idea is that after calling this method, application * will call {@link #nextToken} to point to the next * available token, if any. */ public abstract JsonParser skipChildren() throws IOException, JsonParseException; /** * Method that can be called to determine whether this parser * is closed or not. If it is closed, no new tokens can be * retrieved by calling {@link #nextToken} (and the underlying * stream may be closed). Closing may be due to an explicit * call to {@link #close} or because parser has encountered * end of input. */ public abstract boolean isClosed(); /* /********************************************************** /* Public API, token accessors /********************************************************** */ /** * Accessor to find which token parser currently points to, if any; * null will be returned if none. * If return value is non-null, data associated with the token * is available via other accessor methods. * * @return Type of the token this parser currently points to, * if any: null before any tokens have been read, and * after end-of-input has been encountered, as well as * if the current token has been explicitly cleared. */ public abstract JsonToken getCurrentToken(); /** * Method similar to {@link #getCurrentToken()} but that returns an * int instead of {@link JsonToken} (enum value). *

* Use of int directly is typically more efficient on switch statements, * so this method may be useful when building low-overhead codecs. * Note, however, that effect may not be big enough to matter: make sure * to profile performance before deciding to use this method. * * @since 2.3 * * @return int matching one of constants from {@link JsonTokenId}. */ public abstract int getCurrentTokenId(); /** * Method for checking whether parser currently points to * a token (and data for that token is available). * Equivalent to check for parser.getCurrentToken() != null. * * @return True if the parser just returned a valid * token via {@link #nextToken}; false otherwise (parser * was just constructed, encountered end-of-input * and returned null from {@link #nextToken}, or the token * has been consumed) */ public abstract boolean hasCurrentToken(); /** * Method that can be called to get the name associated with * the current token: for {@link JsonToken#FIELD_NAME}s it will * be the same as what {@link #getText} returns; * for field values it will be preceding field name; * and for others (array values, root-level values) null. */ public abstract String getCurrentName() throws IOException; /** * Method that can be used to access current parsing context reader * is in. There are 3 different types: root, array and object contexts, * with slightly different available information. Contexts are * hierarchically nested, and can be used for example for figuring * out part of the input document that correspond to specific * array or object (for highlighting purposes, or error reporting). * Contexts can also be used for simple xpath-like matching of * input, if so desired. */ public abstract JsonStreamContext getParsingContext(); /** * Method that return the starting location of the current * token; that is, position of the first character from input * that starts the current token. */ public abstract JsonLocation getTokenLocation(); /** * Method that returns location of the last processed character; * usually for error reporting purposes. */ public abstract JsonLocation getCurrentLocation(); /** * Specialized accessor that can be used to verify that the current * token indicates start array (usually meaning that current token * is {@link JsonToken#START_ARRAY}) when start array is expected. * For some specialized parsers this can return true for other cases * as well; this is usually done to emulate arrays. *

* Default implementation is equivalent to: *

     *   getCurrentToken() == JsonToken.START_ARRAY
     *
* but may be overridden by custom parser implementations. * * @return True if the current token can be considered as a * start-array marker (such {@link JsonToken#START_ARRAY}); * false if not. */ public boolean isExpectedStartArrayToken() { return getCurrentToken() == JsonToken.START_ARRAY; } /* /********************************************************** /* Public API, token state overrides /********************************************************** */ /** * Method called to "consume" the current token by effectively * removing it so that {@link #hasCurrentToken} returns false, and * {@link #getCurrentToken} null). * Cleared token value can still be accessed by calling * {@link #getLastClearedToken} (if absolutely needed), but * usually isn't. *

* Method was added to be used by the optional data binder, since * it has to be able to consume last token used for binding (so that * it will not be used again). */ public abstract void clearCurrentToken(); /** * Method that can be called to get the last token that was * cleared using {@link #clearCurrentToken}. This is not necessarily * the latest token read. * Will return null if no tokens have been cleared, * or if parser has been closed. */ public abstract JsonToken getLastClearedToken(); /** * Method that can be used to change what is considered to be * the current (field) name. * May be needed to support non-JSON data formats or unusual binding * conventions; not needed for typical processing. *

* Note that use of this method should only be done as sort of last * resort, as it is a work-around for regular operation. * * @param name Name to use as the current name; may be null. */ public abstract void overrideCurrentName(String name); /* /********************************************************** /* Public API, access to token information, text /********************************************************** */ /** * Method for accessing textual representation of the current token; * if no current token (before first call to {@link #nextToken}, or * after encountering end-of-input), returns null. * Method can be called for any token type. */ public abstract String getText() throws IOException; /** * Method similar to {@link #getText}, but that will return * underlying (unmodifiable) character array that contains * textual value, instead of constructing a String object * to contain this information. * Note, however, that: *

    *
  • Textual contents are not guaranteed to start at * index 0 (rather, call {@link #getTextOffset}) to * know the actual offset *
  • *
  • Length of textual contents may be less than the * length of returned buffer: call {@link #getTextLength} * for actual length of returned content. *
  • *
*

* Note that caller MUST NOT modify the returned * character array in any way -- doing so may corrupt * current parser state and render parser instance useless. *

* The only reason to call this method (over {@link #getText}) * is to avoid construction of a String object (which * will make a copy of contents). */ public abstract char[] getTextCharacters() throws IOException; /** * Accessor used with {@link #getTextCharacters}, to know length * of String stored in returned buffer. * * @return Number of characters within buffer returned * by {@link #getTextCharacters} that are part of * textual content of the current token. */ public abstract int getTextLength() throws IOException; /** * Accessor used with {@link #getTextCharacters}, to know offset * of the first text content character within buffer. * * @return Offset of the first character within buffer returned * by {@link #getTextCharacters} that is part of * textual content of the current token. */ public abstract int getTextOffset() throws IOException; /** * Method that can be used to determine whether calling of * {@link #getTextCharacters} would be the most efficient * way to access textual content for the event parser currently * points to. *

* Default implementation simply returns false since only actual * implementation class has knowledge of its internal buffering * state. * Implementations are strongly encouraged to properly override * this method, to allow efficient copying of content by other * code. * * @return True if parser currently has character array that can * be efficiently returned via {@link #getTextCharacters}; false * means that it may or may not exist */ public abstract boolean hasTextCharacters(); /* /********************************************************** /* Public API, access to token information, numeric /********************************************************** */ /** * Generic number value accessor method that will work for * all kinds of numeric values. It will return the optimal * (simplest/smallest possible) wrapper object that can * express the numeric value just parsed. */ public abstract Number getNumberValue() throws IOException; /** * If current token is of type * {@link JsonToken#VALUE_NUMBER_INT} or * {@link JsonToken#VALUE_NUMBER_FLOAT}, returns * one of {@link NumberType} constants; otherwise returns null. */ public abstract NumberType getNumberType() throws IOException; /** * Numeric accessor that can be called when the current * token is of type {@link JsonToken#VALUE_NUMBER_INT} and * it can be expressed as a value of Java byte primitive type. * It can also be called for {@link JsonToken#VALUE_NUMBER_FLOAT}; * if so, it is equivalent to calling {@link #getDoubleValue} * and then casting; except for possible overflow/underflow * exception. *

* Note: if the resulting integer value falls outside range of * Java byte, a {@link JsonParseException} * will be thrown to indicate numeric overflow/underflow. */ public byte getByteValue() throws IOException { int value = getIntValue(); // So far so good: but does it fit? // [JACKSON-804]: Let's actually allow range of [-128, 255], as those are uniquely mapped // (instead of just signed range of [-128, 127]) if (value < MIN_BYTE_I || value > MAX_BYTE_I) { throw _constructError("Numeric value ("+getText()+") out of range of Java byte"); } return (byte) value; } /** * Numeric accessor that can be called when the current * token is of type {@link JsonToken#VALUE_NUMBER_INT} and * it can be expressed as a value of Java short primitive type. * It can also be called for {@link JsonToken#VALUE_NUMBER_FLOAT}; * if so, it is equivalent to calling {@link #getDoubleValue} * and then casting; except for possible overflow/underflow * exception. *

* Note: if the resulting integer value falls outside range of * Java short, a {@link JsonParseException} * will be thrown to indicate numeric overflow/underflow. */ public short getShortValue() throws IOException { int value = getIntValue(); if (value < MIN_SHORT_I || value > MAX_SHORT_I) { throw _constructError("Numeric value ("+getText()+") out of range of Java short"); } return (short) value; } /** * Numeric accessor that can be called when the current * token is of type {@link JsonToken#VALUE_NUMBER_INT} and * it can be expressed as a value of Java int primitive type. * It can also be called for {@link JsonToken#VALUE_NUMBER_FLOAT}; * if so, it is equivalent to calling {@link #getDoubleValue} * and then casting; except for possible overflow/underflow * exception. *

* Note: if the resulting integer value falls outside range of * Java int, a {@link JsonParseException} * may be thrown to indicate numeric overflow/underflow. */ public abstract int getIntValue() throws IOException; /** * Numeric accessor that can be called when the current * token is of type {@link JsonToken#VALUE_NUMBER_INT} and * it can be expressed as a Java long primitive type. * It can also be called for {@link JsonToken#VALUE_NUMBER_FLOAT}; * if so, it is equivalent to calling {@link #getDoubleValue} * and then casting to int; except for possible overflow/underflow * exception. *

* Note: if the token is an integer, but its value falls * outside of range of Java long, a {@link JsonParseException} * may be thrown to indicate numeric overflow/underflow. */ public abstract long getLongValue() throws IOException; /** * Numeric accessor that can be called when the current * token is of type {@link JsonToken#VALUE_NUMBER_INT} and * it can not be used as a Java long primitive type due to its * magnitude. * It can also be called for {@link JsonToken#VALUE_NUMBER_FLOAT}; * if so, it is equivalent to calling {@link #getDecimalValue} * and then constructing a {@link BigInteger} from that value. */ public abstract BigInteger getBigIntegerValue() throws IOException; /** * Numeric accessor that can be called when the current * token is of type {@link JsonToken#VALUE_NUMBER_FLOAT} and * it can be expressed as a Java float primitive type. * It can also be called for {@link JsonToken#VALUE_NUMBER_INT}; * if so, it is equivalent to calling {@link #getLongValue} * and then casting; except for possible overflow/underflow * exception. *

* Note: if the value falls * outside of range of Java float, a {@link JsonParseException} * will be thrown to indicate numeric overflow/underflow. */ public abstract float getFloatValue() throws IOException; /** * Numeric accessor that can be called when the current * token is of type {@link JsonToken#VALUE_NUMBER_FLOAT} and * it can be expressed as a Java double primitive type. * It can also be called for {@link JsonToken#VALUE_NUMBER_INT}; * if so, it is equivalent to calling {@link #getLongValue} * and then casting; except for possible overflow/underflow * exception. *

* Note: if the value falls * outside of range of Java double, a {@link JsonParseException} * will be thrown to indicate numeric overflow/underflow. */ public abstract double getDoubleValue() throws IOException; /** * Numeric accessor that can be called when the current * token is of type {@link JsonToken#VALUE_NUMBER_FLOAT} or * {@link JsonToken#VALUE_NUMBER_INT}. No under/overflow exceptions * are ever thrown. */ public abstract BigDecimal getDecimalValue() throws IOException; /* /********************************************************** /* Public API, access to token information, other /********************************************************** */ /** * Convenience accessor that can be called when the current * token is {@link JsonToken#VALUE_TRUE} or * {@link JsonToken#VALUE_FALSE}. *

* Note: if the token is not of above-mentioned boolean types, an integer, but its value falls * outside of range of Java long, a {@link JsonParseException} * may be thrown to indicate numeric overflow/underflow. */ public boolean getBooleanValue() throws IOException { JsonToken t = getCurrentToken(); if (t == JsonToken.VALUE_TRUE) return true; if (t == JsonToken.VALUE_FALSE) return false; throw new JsonParseException("Current token ("+t+") not of boolean type", getCurrentLocation()); } /** * Accessor that can be called if (and only if) the current token * is {@link JsonToken#VALUE_EMBEDDED_OBJECT}. For other token types, * null is returned. *

* Note: only some specialized parser implementations support * embedding of objects (usually ones that are facades on top * of non-streaming sources, such as object trees). */ public abstract Object getEmbeddedObject() throws IOException; /* /********************************************************** /* Public API, access to token information, binary /********************************************************** */ /** * Method that can be used to read (and consume -- results * may not be accessible using other methods after the call) * base64-encoded binary data * included in the current textual JSON value. * It works similar to getting String value via {@link #getText} * and decoding result (except for decoding part), * but should be significantly more performant. *

* Note that non-decoded textual contents of the current token * are not guaranteed to be accessible after this method * is called. Current implementation, for example, clears up * textual content during decoding. * Decoded binary content, however, will be retained until * parser is advanced to the next event. * * @param bv Expected variant of base64 encoded * content (see {@link Base64Variants} for definitions * of "standard" variants). * * @return Decoded binary data */ public abstract byte[] getBinaryValue(Base64Variant bv) throws IOException; /** * Convenience alternative to {@link #getBinaryValue(Base64Variant)} * that defaults to using * {@link Base64Variants#getDefaultVariant} as the default encoding. */ public byte[] getBinaryValue() throws IOException { return getBinaryValue(Base64Variants.getDefaultVariant()); } /** * Method that can be used as an alternative to {@link #getBigIntegerValue()}, * especially when value can be large. The main difference (beyond method * of returning content using {@link OutputStream} instead of as byte array) * is that content will NOT remain accessible after method returns: any content * processed will be consumed and is not buffered in any way. If caller needs * buffering, it has to implement it. * * @param out Output stream to use for passing decoded binary data * * @return Number of bytes that were decoded and written via {@link OutputStream} * * @since 2.1 */ public int readBinaryValue(OutputStream out) throws IOException { return readBinaryValue(Base64Variants.getDefaultVariant(), out); } /** * Similar to {@link #readBinaryValue(OutputStream)} but allows explicitly * specifying base64 variant to use. * * @param bv base64 variant to use * @param out Output stream to use for passing decoded binary data * * @return Number of bytes that were decoded and written via {@link OutputStream} * * @since 2.1 */ public int readBinaryValue(Base64Variant bv, OutputStream out) throws IOException { _reportUnsupportedOperation(); return 0; // never gets here } /* /********************************************************** /* Public API, access to token information, coercion/conversion /********************************************************** */ /** * Method that will try to convert value of current token to a * int. * Numbers are coerced using default Java rules; booleans convert to 0 (false) * and 1 (true), and Strings are parsed using default Java language integer * parsing rules. *

* If representation can not be converted to an int (including structured type * markers like start/end Object/Array) * default value of 0 will be returned; no exceptions are thrown. */ public int getValueAsInt() throws IOException { return getValueAsInt(0); } /** * Method that will try to convert value of current token to a * int. * Numbers are coerced using default Java rules; booleans convert to 0 (false) * and 1 (true), and Strings are parsed using default Java language integer * parsing rules. *

* If representation can not be converted to an int (including structured type * markers like start/end Object/Array) * specified def will be returned; no exceptions are thrown. */ public int getValueAsInt(int def) throws IOException { return def; } /** * Method that will try to convert value of current token to a * long. * Numbers are coerced using default Java rules; booleans convert to 0 (false) * and 1 (true), and Strings are parsed using default Java language integer * parsing rules. *

* If representation can not be converted to an int (including structured type * markers like start/end Object/Array) * default value of 0 will be returned; no exceptions are thrown. */ public long getValueAsLong() throws IOException { return getValueAsLong(0); } /** * Method that will try to convert value of current token to a * long. * Numbers are coerced using default Java rules; booleans convert to 0 (false) * and 1 (true), and Strings are parsed using default Java language integer * parsing rules. *

* If representation can not be converted to an int (including structured type * markers like start/end Object/Array) * specified def will be returned; no exceptions are thrown. */ public long getValueAsLong(long def) throws IOException { return def; } /** * Method that will try to convert value of current token to a Java * double. * Numbers are coerced using default Java rules; booleans convert to 0.0 (false) * and 1.0 (true), and Strings are parsed using default Java language integer * parsing rules. *

* If representation can not be converted to an int (including structured types * like Objects and Arrays), * default value of 0.0 will be returned; no exceptions are thrown. */ public double getValueAsDouble() throws IOException { return getValueAsDouble(0.0); } /** * Method that will try to convert value of current token to a * Java double. * Numbers are coerced using default Java rules; booleans convert to 0.0 (false) * and 1.0 (true), and Strings are parsed using default Java language integer * parsing rules. *

* If representation can not be converted to an int (including structured types * like Objects and Arrays), * specified def will be returned; no exceptions are thrown. */ public double getValueAsDouble(double def) throws IOException { return def; } /** * Method that will try to convert value of current token to a * boolean. * JSON booleans map naturally; integer numbers other than 0 map to true, and * 0 maps to false * and Strings 'true' and 'false' map to corresponding values. *

* If representation can not be converted to a boolean value (including structured types * like Objects and Arrays), * default value of false will be returned; no exceptions are thrown. */ public boolean getValueAsBoolean() throws IOException { return getValueAsBoolean(false); } /** * Method that will try to convert value of current token to a * boolean. * JSON booleans map naturally; integer numbers other than 0 map to true, and * 0 maps to false * and Strings 'true' and 'false' map to corresponding values. *

* If representation can not be converted to a boolean value (including structured types * like Objects and Arrays), * specified def will be returned; no exceptions are thrown. */ public boolean getValueAsBoolean(boolean def) throws IOException { return def; } /** * Method that will try to convert value of current token to a * {@link java.lang.String}. * JSON Strings map naturally; scalar values get converted to * their textual representation. * If representation can not be converted to a String value (including structured types * like Objects and Arrays and null token), default value of * null will be returned; no exceptions are thrown. * * @since 2.1 */ public String getValueAsString() throws IOException { return getValueAsString(null); } /** * Method that will try to convert value of current token to a * {@link java.lang.String}. * JSON Strings map naturally; scalar values get converted to * their textual representation. * If representation can not be converted to a String value (including structured types * like Objects and Arrays and null token), specified default value * will be returned; no exceptions are thrown. * * @since 2.1 */ public abstract String getValueAsString(String def) throws IOException; /* /********************************************************** /* Public API, Native Ids (type, object) /********************************************************** */ /** * Introspection method that may be called to see if the underlying * data format supports some kind of Object Ids natively (many do not; * for example, JSON doesn't). *

* Default implementation returns true; overridden by data formats * that do support native Object Ids. Caller is expected to either * use a non-native notation (explicit property or such), or fail, * in case it can not use native object ids. * * @since 2.3 */ public boolean canReadObjectId() { return false; } /** * Introspection method that may be called to see if the underlying * data format supports some kind of Type Ids natively (many do not; * for example, JSON doesn't). *

* Default implementation returns true; overridden by data formats * that do support native Type Ids. Caller is expected to either * use a non-native notation (explicit property or such), or fail, * in case it can not use native type ids. * * @since 2.3 */ public boolean canReadTypeId() { return false; } /** * Method that can be called to check whether current token * (one that was just read) has an associated Object id, and if * so, return it. * Note that while typically caller should check with {@link #canReadObjectId} * first, it is not illegal to call this method even if that method returns * true; but if so, it will return null. This may be used to simplify calling * code. *

* Default implementation will simply return null. * * @since 2.3 */ public Object getObjectId() throws IOException { return null; } /** * Method that can be called to check whether current token * (one that was just read) has an associated type id, and if * so, return it. * Note that while typically caller should check with {@link #canReadTypeId} * first, it is not illegal to call this method even if that method returns * true; but if so, it will return null. This may be used to simplify calling * code. *

* Default implementation will simply return null. * * @since 2.3 */ public Object getTypeId() throws IOException { return null; } /* /********************************************************** /* Public API, optional data binding functionality /********************************************************** */ /** * Method to deserialize JSON content into a non-container * type (it can be an array type, however): typically a bean, array * or a wrapper type (like {@link java.lang.Boolean}). * Note: method can only be called if the parser has * an object codec assigned; this is true for parsers constructed * by MappingJsonFactory (from "jackson-databind" jar) * but not for {@link JsonFactory} (unless its setCodec * method has been explicitly called). *

* This method may advance the event stream, for structured types * the current token will be the closing end marker (END_ARRAY, * END_OBJECT) of the bound structure. For non-structured Json types * (and for {@link JsonToken#VALUE_EMBEDDED_OBJECT}) * stream is not advanced. *

* Note: this method should NOT be used if the result type is a * container ({@link java.util.Collection} or {@link java.util.Map}. * The reason is that due to type erasure, key and value types * can not be introspected when using this method. */ public T readValueAs(Class valueType) throws IOException { return _codec().readValue(this, valueType); } /** * Method to deserialize JSON content into a Java type, reference * to which is passed as argument. Type is passed using so-called * "super type token" * and specifically needs to be used if the root type is a * parameterized (generic) container type. * Note: method can only be called if the parser has * an object codec assigned; this is true for parsers constructed * by MappingJsonFactory (defined in 'jackson-databind' bundle) * but not for {@link JsonFactory} (unless its setCodec * method has been explicitly called). *

* This method may advance the event stream, for structured types * the current token will be the closing end marker (END_ARRAY, * END_OBJECT) of the bound structure. For non-structured Json types * (and for {@link JsonToken#VALUE_EMBEDDED_OBJECT}) * stream is not advanced. */ @SuppressWarnings("unchecked") public T readValueAs(TypeReference valueTypeRef) throws IOException { return (T) _codec().readValue(this, valueTypeRef); } /** * Method for reading sequence of Objects from parser stream, * all with same specified value type. */ public Iterator readValuesAs(Class valueType) throws IOException { return _codec().readValues(this, valueType); } /** * Method for reading sequence of Objects from parser stream, * all with same specified value type. */ public Iterator readValuesAs(TypeReference valueTypeRef) throws IOException { return _codec().readValues(this, valueTypeRef); } /** * Method to deserialize JSON content into equivalent "tree model", * represented by root {@link TreeNode} of resulting model. * For JSON Arrays it will an array node (with child nodes), * for objects object node (with child nodes), and for other types * matching leaf node type */ @SuppressWarnings("unchecked") public T readValueAsTree() throws IOException { return (T) _codec().readTree(this); } protected ObjectCodec _codec() { ObjectCodec c = getCodec(); if (c == null) { throw new IllegalStateException("No ObjectCodec defined for parser, needed for deserialization"); } return c; } /* /********************************************************** /* Internal methods /********************************************************** */ /** * Helper method for constructing {@link JsonParseException}s * based on current state of the parser */ protected JsonParseException _constructError(String msg) { return new JsonParseException(msg, getCurrentLocation()); } /** * Helper method to call for operations that are not supported by * parser implementation. * * @since 2.1 */ protected void _reportUnsupportedOperation() { throw new UnsupportedOperationException("Operation not supported by parser of type "+getClass().getName()); } }