All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.efeichong.uuid.Sequence Maven / Gradle / Ivy

There is a newer version: 1.0.7
Show newest version
package com.efeichong.uuid;

import com.efeichong.exception.BaseException;

import java.net.InetAddress;
import java.util.concurrent.ThreadLocalRandom;

/**
 * 基于Twitter的Snowflake算法实现分布式高效有序ID生产黑科技(sequence)——升级版Snowflake
 *
 * 
* SnowFlake的结构如下(每部分用-分开):
*
* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000
*
* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0
*
* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截) * 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下START_TIME属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69
*
* 10位的数据机器位,可以部署在1024个节点,包括5位dataCenterId和5位workerId
*
* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号
*
*
* 加起来刚好64位,为一个Long型。
* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。 *

*

* 特性: * 1.支持自定义允许时间回拨的范围

* 2.解决跨毫秒起始值每次为0开始的情况(避免末尾必定为偶数,而不便于取余使用问题)

* 3.解决高并发场景中获取时间戳性能问题

* 4.支撑根据IP末尾数据作为workerId * 5.时间回拨方案思考:1024个节点中分配10个点作为时间回拨序号(连续10次时间回拨的概率较小) * * @author lry * @version 3.0 */ public final class Sequence { /** * 起始时间戳 **/ private final static long START_TIME = 1519740777809L; /** * dataCenterId占用的位数:2 **/ private final static long DATA_CENTER_ID_BITS = 2L; /** * workerId占用的位数:8 **/ private final static long WORKER_ID_BITS = 8L; /** * 序列号占用的位数:12(表示只允许workId的范围为:0-4095) **/ private final static long SEQUENCE_BITS = 12L; /** * workerId可以使用范围:0-255 **/ private final static long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS); /** * dataCenterId可以使用范围:0-3 **/ private final static long MAX_DATA_CENTER_ID = ~(-1L << DATA_CENTER_ID_BITS); private final static long WORKER_ID_SHIFT = SEQUENCE_BITS; private final static long DATA_CENTER_ID_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS; private final static long TIMESTAMP_LEFT_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS + DATA_CENTER_ID_BITS; /** * 用mask防止溢出:位与运算保证计算的结果范围始终是 0-4095 **/ private final static long SEQUENCE_MASK = ~(-1L << SEQUENCE_BITS); private static byte LAST_IP = 0; private final long workerId; private final long dataCenterId; private final boolean clock; private final long timeOffset; private final boolean randomSequence; private final ThreadLocalRandom tlr = ThreadLocalRandom.current(); private long sequence = 0L; private long lastTimestamp = -1L; public Sequence(long dataCenterId) { this(dataCenterId, 0x000000FF & getLastIPAddress(), false, 5L, false); } public Sequence(long dataCenterId, boolean clock, boolean randomSequence) { this(dataCenterId, 0x000000FF & getLastIPAddress(), clock, 5L, randomSequence); } /** * 基于Snowflake创建分布式ID生成器 * * @param dataCenterId 数据中心ID,数据范围为0~255 * @param workerId 工作机器ID,数据范围为0~3 * @param clock true表示解决高并发下获取时间戳的性能问题 * @param timeOffset 允许时间回拨的毫秒量,建议5ms * @param randomSequence true表示使用毫秒内的随机序列(超过范围则取余) */ public Sequence(long dataCenterId, long workerId, boolean clock, long timeOffset, boolean randomSequence) { if (dataCenterId > MAX_DATA_CENTER_ID || dataCenterId < 0) { throw new IllegalArgumentException("Data Center Id can't be greater than " + MAX_DATA_CENTER_ID + " or less than 0"); } if (workerId > MAX_WORKER_ID || workerId < 0) { throw new IllegalArgumentException("Worker Id can't be greater than " + MAX_WORKER_ID + " or less than 0"); } this.workerId = workerId; this.dataCenterId = dataCenterId; this.clock = clock; this.timeOffset = timeOffset; this.randomSequence = randomSequence; } /** * 用IP地址最后几个字节标示 *

* eg:192.168.1.30->30 * * @return last IP */ public static byte getLastIPAddress() { if (LAST_IP != 0) { return LAST_IP; } try { InetAddress inetAddress = InetAddress.getLocalHost(); byte[] addressByte = inetAddress.getAddress(); LAST_IP = addressByte[addressByte.length - 1]; } catch (Exception e) { throw new BaseException("Unknown Host Exception", e); } return LAST_IP; } /** * 获取ID * * @return long */ public synchronized Long nextId() { long currentTimestamp = this.timeGen(); // 闰秒:如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过,这个时候应当抛出异常 if (currentTimestamp < lastTimestamp) { // 校验时间偏移回拨量 long offset = lastTimestamp - currentTimestamp; if (offset > timeOffset) { throw new BaseException("Clock moved backwards, refusing to generate id for [" + offset + "ms]"); } try { // 时间回退timeOffset毫秒内,则允许等待2倍的偏移量后重新获取,解决小范围的时间回拨问题 this.wait(offset << 1); } catch (Exception e) { throw new BaseException(e); } // 再次获取 currentTimestamp = this.timeGen(); // 再次校验 if (currentTimestamp < lastTimestamp) { throw new BaseException("Clock moved backwards, refusing to generate id for [" + offset + "ms]"); } } // 同一毫秒内序列直接自增 if (lastTimestamp == currentTimestamp) { // randomSequence为true表示随机生成允许范围内的序列起始值并取余数,否则毫秒内起始值为0L开始自增 long tempSequence = sequence + 1; if (randomSequence && tempSequence > SEQUENCE_MASK) { tempSequence = tempSequence % SEQUENCE_MASK; } // 通过位与运算保证计算的结果范围始终是 0-4095 sequence = tempSequence & SEQUENCE_MASK; if (sequence == 0) { currentTimestamp = this.tilNextMillis(lastTimestamp); } } else { // randomSequence为true表示随机生成允许范围内的序列起始值,否则毫秒内起始值为0L开始自增 sequence = randomSequence ? tlr.nextLong(SEQUENCE_MASK + 1) : 0L; } lastTimestamp = currentTimestamp; long currentOffsetTime = currentTimestamp - START_TIME; /* * 1.左移运算是为了将数值移动到对应的段(41、5、5,12那段因为本来就在最右,因此不用左移) * 2.然后对每个左移后的值(la、lb、lc、sequence)做位或运算,是为了把各个短的数据合并起来,合并成一个二进制数 * 3.最后转换成10进制,就是最终生成的id */ return (currentOffsetTime << TIMESTAMP_LEFT_SHIFT) | // 数据中心位 (dataCenterId << DATA_CENTER_ID_SHIFT) | // 工作ID位 (workerId << WORKER_ID_SHIFT) | // 毫秒序列化位 sequence; } /** * 保证返回的毫秒数在参数之后(阻塞到下一个毫秒,直到获得新的时间戳)——CAS * * @param lastTimestamp last timestamp * @return next millis */ private long tilNextMillis(long lastTimestamp) { long timestamp = this.timeGen(); while (timestamp <= lastTimestamp) { // 如果发现时间回拨,则自动重新获取(可能会处于无限循环中) timestamp = this.timeGen(); } return timestamp; } /** * 获得系统当前毫秒时间戳 * * @return timestamp 毫秒时间戳 */ private long timeGen() { return clock ? SystemClock.INSTANCE.currentTimeMillis() : System.currentTimeMillis(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy