com.efeichong.uuid.Sequence Maven / Gradle / Ivy
package com.efeichong.uuid;
import com.efeichong.exception.BaseException;
import java.net.InetAddress;
import java.util.concurrent.ThreadLocalRandom;
/**
* 基于Twitter的Snowflake算法实现分布式高效有序ID生产黑科技(sequence)——升级版Snowflake
*
*
* SnowFlake的结构如下(每部分用-分开):
*
* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000
*
* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0
*
* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
* 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下START_TIME属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69
*
* 10位的数据机器位,可以部署在1024个节点,包括5位dataCenterId和5位workerId
*
* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号
*
*
* 加起来刚好64位,为一个Long型。
* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
*
*
* 特性:
* 1.支持自定义允许时间回拨的范围
* 2.解决跨毫秒起始值每次为0开始的情况(避免末尾必定为偶数,而不便于取余使用问题)
* 3.解决高并发场景中获取时间戳性能问题
* 4.支撑根据IP末尾数据作为workerId
* 5.时间回拨方案思考:1024个节点中分配10个点作为时间回拨序号(连续10次时间回拨的概率较小)
*
* @author lry
* @version 3.0
*/
public final class Sequence {
/**
* 起始时间戳
**/
private final static long START_TIME = 1519740777809L;
/**
* dataCenterId占用的位数:2
**/
private final static long DATA_CENTER_ID_BITS = 2L;
/**
* workerId占用的位数:8
**/
private final static long WORKER_ID_BITS = 8L;
/**
* 序列号占用的位数:12(表示只允许workId的范围为:0-4095)
**/
private final static long SEQUENCE_BITS = 12L;
/**
* workerId可以使用范围:0-255
**/
private final static long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS);
/**
* dataCenterId可以使用范围:0-3
**/
private final static long MAX_DATA_CENTER_ID = ~(-1L << DATA_CENTER_ID_BITS);
private final static long WORKER_ID_SHIFT = SEQUENCE_BITS;
private final static long DATA_CENTER_ID_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS;
private final static long TIMESTAMP_LEFT_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS + DATA_CENTER_ID_BITS;
/**
* 用mask防止溢出:位与运算保证计算的结果范围始终是 0-4095
**/
private final static long SEQUENCE_MASK = ~(-1L << SEQUENCE_BITS);
private static byte LAST_IP = 0;
private final long workerId;
private final long dataCenterId;
private final boolean clock;
private final long timeOffset;
private final boolean randomSequence;
private final ThreadLocalRandom tlr = ThreadLocalRandom.current();
private long sequence = 0L;
private long lastTimestamp = -1L;
public Sequence(long dataCenterId) {
this(dataCenterId, 0x000000FF & getLastIPAddress(), false, 5L, false);
}
public Sequence(long dataCenterId, boolean clock, boolean randomSequence) {
this(dataCenterId, 0x000000FF & getLastIPAddress(), clock, 5L, randomSequence);
}
/**
* 基于Snowflake创建分布式ID生成器
*
* @param dataCenterId 数据中心ID,数据范围为0~255
* @param workerId 工作机器ID,数据范围为0~3
* @param clock true表示解决高并发下获取时间戳的性能问题
* @param timeOffset 允许时间回拨的毫秒量,建议5ms
* @param randomSequence true表示使用毫秒内的随机序列(超过范围则取余)
*/
public Sequence(long dataCenterId, long workerId, boolean clock, long timeOffset, boolean randomSequence) {
if (dataCenterId > MAX_DATA_CENTER_ID || dataCenterId < 0) {
throw new IllegalArgumentException("Data Center Id can't be greater than " + MAX_DATA_CENTER_ID + " or less than 0");
}
if (workerId > MAX_WORKER_ID || workerId < 0) {
throw new IllegalArgumentException("Worker Id can't be greater than " + MAX_WORKER_ID + " or less than 0");
}
this.workerId = workerId;
this.dataCenterId = dataCenterId;
this.clock = clock;
this.timeOffset = timeOffset;
this.randomSequence = randomSequence;
}
/**
* 用IP地址最后几个字节标示
*
* eg:192.168.1.30->30
*
* @return last IP
*/
public static byte getLastIPAddress() {
if (LAST_IP != 0) {
return LAST_IP;
}
try {
InetAddress inetAddress = InetAddress.getLocalHost();
byte[] addressByte = inetAddress.getAddress();
LAST_IP = addressByte[addressByte.length - 1];
} catch (Exception e) {
throw new BaseException("Unknown Host Exception", e);
}
return LAST_IP;
}
/**
* 获取ID
*
* @return long
*/
public synchronized Long nextId() {
long currentTimestamp = this.timeGen();
// 闰秒:如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过,这个时候应当抛出异常
if (currentTimestamp < lastTimestamp) {
// 校验时间偏移回拨量
long offset = lastTimestamp - currentTimestamp;
if (offset > timeOffset) {
throw new BaseException("Clock moved backwards, refusing to generate id for [" + offset + "ms]");
}
try {
// 时间回退timeOffset毫秒内,则允许等待2倍的偏移量后重新获取,解决小范围的时间回拨问题
this.wait(offset << 1);
} catch (Exception e) {
throw new BaseException(e);
}
// 再次获取
currentTimestamp = this.timeGen();
// 再次校验
if (currentTimestamp < lastTimestamp) {
throw new BaseException("Clock moved backwards, refusing to generate id for [" + offset + "ms]");
}
}
// 同一毫秒内序列直接自增
if (lastTimestamp == currentTimestamp) {
// randomSequence为true表示随机生成允许范围内的序列起始值并取余数,否则毫秒内起始值为0L开始自增
long tempSequence = sequence + 1;
if (randomSequence && tempSequence > SEQUENCE_MASK) {
tempSequence = tempSequence % SEQUENCE_MASK;
}
// 通过位与运算保证计算的结果范围始终是 0-4095
sequence = tempSequence & SEQUENCE_MASK;
if (sequence == 0) {
currentTimestamp = this.tilNextMillis(lastTimestamp);
}
} else {
// randomSequence为true表示随机生成允许范围内的序列起始值,否则毫秒内起始值为0L开始自增
sequence = randomSequence ? tlr.nextLong(SEQUENCE_MASK + 1) : 0L;
}
lastTimestamp = currentTimestamp;
long currentOffsetTime = currentTimestamp - START_TIME;
/*
* 1.左移运算是为了将数值移动到对应的段(41、5、5,12那段因为本来就在最右,因此不用左移)
* 2.然后对每个左移后的值(la、lb、lc、sequence)做位或运算,是为了把各个短的数据合并起来,合并成一个二进制数
* 3.最后转换成10进制,就是最终生成的id
*/
return (currentOffsetTime << TIMESTAMP_LEFT_SHIFT) |
// 数据中心位
(dataCenterId << DATA_CENTER_ID_SHIFT) |
// 工作ID位
(workerId << WORKER_ID_SHIFT) |
// 毫秒序列化位
sequence;
}
/**
* 保证返回的毫秒数在参数之后(阻塞到下一个毫秒,直到获得新的时间戳)——CAS
*
* @param lastTimestamp last timestamp
* @return next millis
*/
private long tilNextMillis(long lastTimestamp) {
long timestamp = this.timeGen();
while (timestamp <= lastTimestamp) {
// 如果发现时间回拨,则自动重新获取(可能会处于无限循环中)
timestamp = this.timeGen();
}
return timestamp;
}
/**
* 获得系统当前毫秒时间戳
*
* @return timestamp 毫秒时间戳
*/
private long timeGen() {
return clock ? SystemClock.INSTANCE.currentTimeMillis() : System.currentTimeMillis();
}
}